2022 AMC 12A Problems/Problem 11
Revision as of 12:35, 12 November 2022 by Jamesl123456 (talk | contribs)
Problem
What is the product of all real numbers such that the distance on the number line between
and
is twice the distance on the number line between
and
?
Solution
First, notice that there must be two such numbers: one greater than and one less than it. Furthermore, they both have to be the same distance away, namely
. Let these two numbers be
and
. Because they are equidistant from
, we have
. Using log properties, this simplifies to
. We then have
, so
.