2004 AMC 8 Problems/Problem 2
Problem
How many different four-digit numbers can be formed by rearranging the four digits in ?
Solution 1
We can solve this problem easily, just by calculating how many choices there are for each of the four digits.
First off, we know there are only choices for the first digit, because
isn't a valid choice, or the number would a 3-digit number, which is not what we want.
We have
choices for the second digit, since we already used up one of the digits, and
choices for the third, and finally just
choices for the fourth and final one.
is 12, but there are 2 zeros that have been counted as different numbers, so divide by 2 to get
.
Solution 2
Note that the four-digit number must start with either a or a
. The four-digit numbers that start with
are
, and
. The four-digit numbers that start with
are
, and
which gives us a total of
.
Solution 3
In order for the resulting numbers to have four digits, they cannot start with . Therefore, both zeroes must be in the last three places. There are
ways to choose which two of the last three places are zeroes. Then there are
ways to arrange the
and the
in the remaining two places, giving us a total of
.
See Also
2004 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.