2017 AMC 10A Problems/Problem 24
Problem
For certain real numbers ,
, and
, the polynomial
has three distinct roots, and each root of
is also a root of the polynomial
What is
?
Solution
must have four roots, three of which are roots of
. Using the fact that every polynomial has a unique factorization into its roots, and since the leading coefficient of
and
are the same, we know that
where is the fourth root of
. Substituting
and expanding, we find that
Comparing coefficients with , we see that