1990 AHSME Problems/Problem 26
Problem
Ten people form a circle. Each picks a number and tells it to the two neighbors adjacent to them in the circle. Then each person computes and announces the average of the numbers of their two neighbors. The figure shows the average announced by each person (not the original number the person picked.)
The number picked by the person who announced the average
was
Solution 1 (Ten Variables)
Number the people to
in order in which they announced the numbers. Let
be the number chosen by person
.
For each , the number
is the average of
and
(indices taken modulo
).
Or equivalently, the number
is the sum of
and
.
We can split these ten equations into two independent sets of five - one for the even-numbered peoples, one for the odd-numbered ones. As we only need , we are interested in these equations:
Summing all five of them, we get , hence
.
If we now take the sum of all five variables and subtract equations and
, we see that
.
Solution 2 (One Variable)
For suppose Person
announces the number
Let be the number picked by Person
We construct the following table:
We have
from which
~MRENTHUSIASM
See also
1990 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 25 |
Followed by Problem 27 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.