2022 AIME I Problems/Problem 14
Problem
Given and a point
on one of its sides, call line
the splitting line of
through
if
passes through
and divides
into two polygons of equal perimeter. Let
be a triangle where
and
and
are positive integers. Let
and
be the midpoints of
and
, respectively, and suppose that the splitting lines of
through
and
intersect at
. Find the perimeter of
.
The Geometry Part - Solution 1
Consider the splitting line through . Extend
on ray
such that
. Then the splitting line bisects segment
, so in particular it is the midline of triangle
and thus it is parallel to
. But since triangle
is isosceles, we can easily see
is parallel to the angle bisector of
, so the splitting line is also parallel to this bisector, and similar for the splitting line through
. Some simple angle chasing reveals the condition is now equivalent to
.
- MortemEtInteritum
The Geometry Part - Solution 2
Let and
be the splitting lines. Reflect
across
to be
and
across
to be
. Take
and
, which are spiral similarity centers on the other side of
as
such that
and
. This gets that because
and
, then
and
are on
's circumcircle. Now, we know that
and
so because
and
, then
and
and
and
.
We also notice that because and
correspond on
and
, and because
and
correspond on
and
, then the angle formed by
and
is equal to the angle formed by
and
which is equal to
. Thus,
. Similarly,
and so
and
.
- kevinmathz
The NT Part
We now need to solve . A quick
check gives that
and
. Thus, it's equivalent to solve
.
Let be one root of
. Then, recall that
is the ring of integers of
and is a unique factorization domain. Notice that
. Therefore, it suffices to find an element of
with the norm
.
To do so, we factor in
. Since it's
, it must split. A quick inspection gives
. Thus,
, so
\begin{align*}
73^2 &= N((8-\omega)^2) \\
&= N(64 - 16\omega + \omega^2) \\
&= N(64 - 16\omega + (-1-\omega)) \\
&= N(63 - 17\omega),
\end{align*}giving the solution
and
, yielding
and
, so the sum is
. Since
and
are primes in
, the solution must divide
. One can then easily check that this is the unique solution.
- MarkBcc168