Wilson's Theorem
Statement
If and only if is a prime, then
is a multiple of
. In other words
.
Proof
Wilson's theorem is easily verifiable for 2 and 3, so let's consider . If
is composite, then its positive factors are among
. Hence,
, so
.
However if is prime, then each of the above integers are relatively prime to
. So for each of these integers a there is another
such that
. It is important to note that this
is unique modulo
, and that since
is prime,
if and only if
is
or
. Now if we omit 1 and
, then the others can be grouped into pairs whose product is congruent to one,
Finally, multiply this equality by to complete the proof.
Example Problem untilizing Wilson's
<Maybe steal something from AoPS 2 with the Admin's permission?>