2010 USAJMO Problems/Problem 4
Problem
A triangle is called a parabolic triangle if its vertices lie on a
parabola . Prove that for every nonnegative integer
, there
is an odd number
and a parabolic triangle with vertices at three
distinct points with integer coordinates with area
.
A Small Hint
Before you read the solution, try using induction on n. (And don't step by one!)
Solution
Let the vertices of the triangle be .
The area of the triangle is the absolute value of
in the equation:
If we choose ,
and gives the actual area. Furthermore,
we clearly see that the area does not change when we subtract the same
constant value from each of
,
and
. Thus, all possible areas
can be obtained with
, in which case
.
If a particular choice of and
gives an area
,
with
a positive integer and
a positive odd integer, then setting
,
gives an area
.
Therefore, if we can find solutions for ,
and
,
all other solutions can be generated by repeated multiplication
of
and
by a factor of
.
Setting and
, we get
, which yields
the
case.
Setting and
, we get
, which yields
the
case.
Setting and
, we get
. Multiplying these
values of
and
by
, we get
,
,
,
which yields the
case. This completes the construction.
Solution 2
We proceed via induction on n. Notice that we prove instead a stronger result: there exists a parabolic triangle with area with two of the vertices sharing the same ordinate (y-coordinate).
Base case: If n = 0, consider the parabolic triangle ABC with A(0, 0), B(1, 1), C(-1, 1) that has area 1/2 * 1 * 2 = 1, so that m = 1. If n = 1, let ABC = A(1, 1), B(2, 4), C(-2, 4). Because ABC has area 1/2 * 3 * 4 = 6, we set n = 1 and m = 3. If n = 2, consider the triangle formed by A(3, 9), B(4, 16), C(-4, 16). It is parabolic and has area 1/2 * 7 * 8 = 28, so n = 2 and m = 7.
Inductive step:
If n = k produces parabolic triangle ABC with A(a, ), B(b,
), and C(-b,
), consider A'B'C' with vertices A(2a,
), B(2b,
), and C(-2b,
). If ABC has area
, then A'B'C' has area
, which is easily verified using the 1/2 * base * height formula for triangle area. This completes the inductive step for k -> k+3.
Hence, for every nonnegative integer n, there exists an odd m and a parabolic triangle with area with two vertices sharing the same ordinate. The problem statement is a direct result of this result.
See Also
2010 USAJMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.