2015 AMC 10A Problems/Problem 21
Problem 21
Tetrahedron has
,
,
,
,
, and
. What is the volume of the tetrahedron?
Solution
Let the midpoint of be
. We have
, and so by the Pythagorean Theorem
and
. Because the altitude from
of tetrahedron
passes touches plane
on
, it is also an altitude of triangle
. The area
of triangle
is, by Heron's Formula, given by
Substituting
and performing huge (but manageable) computations yield
, so
. Thus, if
is the length of the altitude from
of the tetrahedron,
. Our answer is thus
and so our answer is
.