2011 USAMO Problems/Problem 4
This problem is from both the 2011 USAJMO and the 2011 USAMO, so both problems redirect here.
Contents
Problem
Consider the assertion that for each positive integer , the remainder upon dividing
by
is a power of 4. Either prove the assertion or find (with proof) a counter-example.
Solution
We will show that is a counter-example.
Since , we see that for any integer
,
. Let
be the residue of
. Note that since
and
, necessarily
, and thus the remainder in question is
. We want to show that
is an odd power of 2 for some
, and thus not a power of 4.
Let for some odd prime
. Then
. Since 2 is co-prime to
, we have
and thus
Therefore, for a counter-example, it suffices that be odd. Choosing
, we have
. Therefore,
and thus
Since
is not a power of 4, we are done.
Solution 2
Lemma (useful for all situations): If and
are positive integers such that
divides
, then
divides
.
Proof:
. Replacing the
with a
and dividing out the powers of two should create an easy induction proof which will be left to the reader as an Exercise.
Consider . We will prove that this case is a counterexample via contradiction.
Because , we will assume there exists a positive integer
such that
divides
and
. Dividing the powers of
from LHS gives
divides
. Hence,
divides
. Because
is odd,
divides
. Modular arithmetic (in particular, Euler's totient function for
equals
) gives
and so
. However,
, a contradiction. Thus,
is a valid counterexample.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2011 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |