LaTeX:Commands
LaTeX |
About - Getting Started - Diagrams - Symbols - Downloads - Basics - Math - Examples - Pictures - Layout - Commands - Packages - Help |
This page introduces various useful commands for rendering math in LaTeX, as well as instructions for building your own commands.
Contents
[hide]Subscripts and Superscripts
Subscripts and superscripts (such as exponents) can be made using the underscore _ and caret ^ symbols respectively.
Symbol | Command | Symbol | Command |
---|---|---|---|
2^2 | a_i | ||
2^{23} | n_{i-1} | ||
a^{i+1}_3 | x^{3^2} | ||
2^{a_i} | 2^a_i |
Notice that we can apply both a subscript and a superscript at the same time. For subscripts or superscripts with more than one character, you must surround what you want to be the exponent/superscript with curly braces. For example, x^10
produces , while x^{10}
produces .
Math Commands
Here are some commonly used math commands in LaTeX:
Fractions
Symbol | Command |
---|---|
\frac{1}{2} or \frac12 | |
\frac{2}{x+2} | |
\frac{1+\frac{1}{x}}{3x + 2} |
Notice that with fractions with a 1-digit numerator and a 1-digit denominator, we can simply group the numerator and the denominator together as one number. However, for fractions with either a numerator or a denominator that requires more than one character (or if the numerator starts with a letter), you need to surround everything in curly brackets.
Use \cfrac for continued fractions.
Expression | Command |
---|---|
\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}} |
Radicals
Symbol | Command |
---|---|
\sqrt{3} | |
\sqrt{x+y} | |
\sqrt{x+\frac{1}{2}} | |
\sqrt[3]{3} | |
\sqrt[n]{x} |
Sums, Products, Limits and Logarithms
Use the commands \sum, \prod, \lim, and \log respectively. To denote lower and upper bounds, or the base of the logarithm, use _ and ^ in the same way they are used for subscripts and superscripts. (Lower and upper bounds for integrals work the same way, as you'll see in the calculus section)
Symbol | Command |
---|---|
\sum_{i=1}^{\infty}\frac{1}{i} | |
\prod_{n=1}^5\frac{n}{n-1} | |
\lim_{x\to\infty}\frac{1}{x} | |
\lim\limits_{x\to\infty}\frac{1}{x} | |
\log_n n^2 |
Some of these are prettier in display mode:
Symbol | Command |
---|---|
\sum_{i=1}^{\infty}\frac{1}{i} | |
\prod_{n=1}^5\frac{n}{n-1} | |
\lim_{x\to\infty}\frac{1}{x} |
Note that we can use sums, products, and logarithms without _ or ^ modifiers.
Symbol | Command |
---|---|
\sum\frac{1}{i} | |
\prod\frac{n}{n-1} | |
\log n^2 | |
\ln e |
Mods
Symbol | Command |
---|---|
9\equiv 3 \bmod{6} | |
9\equiv 3 \pmod{6} | |
9\equiv 3 \mod{6} | |
9\equiv 3 \pod{6} |
Combinations
Symbol | Command |
---|---|
\binom{1}{1} | |
\binom{n-1}{r-1} |
These often look better in display mode:
Symbol | Command |
---|---|
\dbinom{9}{3} | |
\dbinom{n-1}{r-1} |
Trigonometric Functions
Most of these are just the abbreviation of the trigonometric function with simply a backslash added before the abbreviation.
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\cos | \sin | \tan | |||
\sec | \csc | \cot | |||
\arccos | \arcsin | \arctan | |||
\cosh | \sinh | \tanh | |||
\coth |
Here are a couple examples:
Symbol | Command |
---|---|
\cos^2 x +\sin^2 x = 1 | |
\cos 90^\circ = 0 |
Calculus
Below are examples of calculus expressions rendered in LaTeX. Most of these commands have been introduced before. Notice how definite integrals are rendered (and the difference between inline math and display mode for definite integrals). The \, in the integrals makes a small space before the dx.
Symbol | Command |
---|---|
\frac{d}{dx}\left(x^2\right) = 2x | |
\int 2x\,dx = x^2+C | |
\int^5_1 2x\,dx = 24 | |
\frac{\partial^2U}{\partial x^2} + \frac{\partial^2U}{\partial y^2} | |
\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds |
Overline and Underline
Symbol | Command |
---|---|
\overline{a+bi} | |
\underline{747} |
LaTeX
Other Functns
\arg | $\te
|} Some of these commands take subscripts in the same way sums, products, and logarithms do. Some render differently in display mode and inline math mode. |$ (Error compiling LaTeX. Unknown error_msg)\dim_x\textstyle\gcd_x\inf_x$||\inf_x |- ==Matric is given by the equation \[ f(\la ==Text Styles in Math Mode== You can render letters in various styles in math mode. Below are examples; you should be able to use these with any letters. The \mathbb requires the amsfonts package to be included in your document's preamble. Do not try to do \mathbb{year}. You'll get$ (Error compiling LaTeX. Unknown error_msg)\mathbb{year}$, and that looks nothing like it! {| class="latextable" !Symbol !! Command!!Symbol !! Command!!Symbol !! Command!!Symbol !! Command |-hcal{R}$ (Error compiling LaTeX. Unknown error_msg) |
\mathcal{R} | \mathfrak{R} | ||||
\mathbb{Z} | \mathbf{Z} | \mathcal{Z} | \mathfrak{Z} | ||||
\mathbb{Q} | \mathbf{Q} | \mathcal{Q} | $most useful in $$...$$ or $...$ mode, where breaking up the math mode would force the output on to a new line entirely.
So $$n^2 + 5 = 30\text{ so we have }n=\pm5$$ gives How to Build Your Own CommandsThe command> \documength $\hypot{3}{4}$ (Error compiling LaTeX. Unknown error_msg). sqrt[3]{2}\cbrt{2}$. \end{document} </nowiki>The \newcommand dputs will be sent to the cois called. It can be used for other purposes, not just for making math commands you'll use a lot easier to call. For example, try this: <nowiki> \pdfpagewidth 8.5p A.\ #2\hfill B.\ #3\hfill C.\ #4\hfill D.\ #5\hfill E.\ NOTA} \begin{document} \prob{Evaluateum_{fty \frac{1}{ |