2012 Indonesia MO Problems/Problem 7
Problem
Let be a positive integer. Show that the equationhave solution of pairs of positive integers if and only if is divisible by some perfect square greater than .
Solution
Since iff is a double implication, we can prove that if there exists a positive integer solution to n1n1\sqrt{x}+\sqrt{y}=\sqrt{n}$.
Lets tackle the latter first, let$ (Error compiling LaTeX. Unknown error_msg)n=m^2pm>1p1x=p(m-1)^2y=p(1)^2\sqrt{p(m-1)^2}+\sqrt{p(1)^2}=\sqrt{m^2p}\implies (m-1)\sqrt{p€+\aqrt{p}=m\sqrt{p}\implies m\sqrt{p}=m\sqrt{p}$which is true, thus it is proven
For the first, let$ (Error compiling LaTeX. Unknown error_msg)x=a^2by=c^2db,d1\sqrt{x}+\sqrt{y}=\sqrt{n}\implies x+y+2\sqrt{xy}=n\sqrt{xy}xya^2c^2bdbdb=p_1p_2\dots p_ipbddp_1p_2\dots p_ip_kbddbb=d$. <cmath>x+y+2\sqrt{xy}=n</cmath> <cmath>a^2b+c^2b+2\sqrt{a^2b^2c^2=n</cmath> <cmath>a^2b+c^2b+2abc=n</cmath> <cmath>b(a^2+c^2+2ac)=n</cmath> <cmath>b(a+c)^2=n</cmath> since$ (Error compiling LaTeX. Unknown error_msg)a,c\geq 1\implies a+c\geq 2$, thus n is divisible by a perfect square greater than 1
See Also
2012 Indonesia MO (Problems) | ||
Preceded by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 | Followed by Problem 8 |
All Indonesia MO Problems and Solutions |