Y by Adventure10, Mango247
Given
are the reals. Prove that:
![\[ \left(\frac {a}{b - c}\right)^2 + \left(\frac {b}{c - a}\right)^2 + \left(\frac {c}{a - b}\right)^2 \ge \frac {1}{2} + \frac {3(ab + bc + ca)}{a^2 + b^2 + c^2}\]](//latex.artofproblemsolving.com/7/3/4/734032ae618a9addabb3c18c84f8bf2b6e13e588.png)
Notice that: With a, b, c are three sides of a triagle, this ineq is stronger than Dao Hai Long's ineq


![\[ \left(\frac {a}{b - c}\right)^2 + \left(\frac {b}{c - a}\right)^2 + \left(\frac {c}{a - b}\right)^2 \ge \frac {1}{2} + \frac {3(ab + bc + ca)}{a^2 + b^2 + c^2}\]](http://latex.artofproblemsolving.com/7/3/4/734032ae618a9addabb3c18c84f8bf2b6e13e588.png)
Notice that: With a, b, c are three sides of a triagle, this ineq is stronger than Dao Hai Long's ineq

