Difference between revisions of "1997 AJHSME Problems/Problem 2"

(Created page with "The smallest two-digit integer he can subtract is 10. <cmath>200-10=190</cmath> <cmath>190\times2=380</cmath> <math>\boxed{\textbf{(D)}}</math>")
 
Line 1: Line 1:
The smallest two-digit integer he can subtract is 10.
+
== Problem==
 +
 
 +
Ahn chooses a two-digit integer, subtracts it from 200, and doubles the result.  What is the largest number Ahn can get?
 +
 
 +
<math>\text{(A)}\ 200 \qquad \text{(B)}\ 202 \qquad \text{(C)}\ 220 \qquad \text{(D)}\ 380 \qquad \text{(E)}\ 398</math>
 +
 
 +
==Solution==
 +
 
 +
The smallest two-digit integer he can subtract from <math>200</math> is <math>10</math>.  This will give the largest result for that first operation, and doubling it will keep it as the largest number possible.
 +
 
 
<cmath>200-10=190</cmath>
 
<cmath>200-10=190</cmath>
 
<cmath>190\times2=380</cmath>
 
<cmath>190\times2=380</cmath>
  
 
<math>\boxed{\textbf{(D)}}</math>
 
<math>\boxed{\textbf{(D)}}</math>
 +
 +
== See also ==
 +
{{AJHSME box|year=1997|num-b=1|num-a=3}}
 +
* [[AJHSME]]
 +
* [[AJHSME Problems and Solutions]]
 +
* [[Mathematics competition resources]]

Revision as of 14:04, 31 July 2011

Problem

Ahn chooses a two-digit integer, subtracts it from 200, and doubles the result. What is the largest number Ahn can get?

$\text{(A)}\ 200 \qquad \text{(B)}\ 202 \qquad \text{(C)}\ 220 \qquad \text{(D)}\ 380 \qquad \text{(E)}\ 398$

Solution

The smallest two-digit integer he can subtract from $200$ is $10$. This will give the largest result for that first operation, and doubling it will keep it as the largest number possible.

\[200-10=190\] \[190\times2=380\]

$\boxed{\textbf{(D)}}$

See also

1997 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions