Difference between revisions of "2013 AIME I Problems/Problem 12"
Expilncalc (talk | contribs) (Added solution) |
Expilncalc (talk | contribs) (→Cartesian Variation Solution) |
||
Line 7: | Line 7: | ||
==Cartesian Variation Solution== | ==Cartesian Variation Solution== | ||
− | Also use a coordinate system, but upon drawing the diagram call <math>Q</math> the origin and <math>QP</math> be on the x-axis. | + | Also use a coordinate system, but upon drawing the diagram call <math>Q</math> the origin and <math>QP</math> be on the x-axis. Obviously <math>F</math> is the vertex on <math>RP</math>. After labeling coordinates (noting additionally that <math>QBC</math> is an equilateral triangle), we see that the area is <math>QP</math> times <math>0.5</math> times the ordinate of <math>R</math>. Draw a perpendicular of <math>F</math>, call it <math>H</math>, and note that <math>QP = 1 + \sqrt{3}</math> after using the trig functions for <math>75</math> degrees. |
Now, get the lines for <math>QR</math> and <math>RP</math>: <math>y=\sqrt{3}x</math> and <math>y=-(2+\sqrt{3})x + (5+\sqrt{3})</math>, whereupon we get the ordinate of <math>R</math> to be <math>\frac{3+2\sqrt{3}}{2}</math>, and the area is <math>\frac{5\sqrt{3} + 9}{4}</math>, so our answer is <math>\boxed{021}</math>. | Now, get the lines for <math>QR</math> and <math>RP</math>: <math>y=\sqrt{3}x</math> and <math>y=-(2+\sqrt{3})x + (5+\sqrt{3})</math>, whereupon we get the ordinate of <math>R</math> to be <math>\frac{3+2\sqrt{3}}{2}</math>, and the area is <math>\frac{5\sqrt{3} + 9}{4}</math>, so our answer is <math>\boxed{021}</math>. | ||
+ | |||
== See also == | == See also == | ||
{{AIME box|year=2013|n=I|num-b=11|num-a=13}} | {{AIME box|year=2013|n=I|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:51, 23 January 2018
Problem 12
Let be a triangle with and . A regular hexagon with side length 1 is drawn inside so that side lies on , side lies on , and one of the remaining vertices lies on . There are positive integers and such that the area of can be expressed in the form , where and are relatively prime, and c is not divisible by the square of any prime. Find .
Solution
First, find that . Draw . Now draw around such that is adjacent to and . The height of is , so the length of base is . Let the equation of be . Then, the equation of is . Solving the two equations gives . The area of is .
Cartesian Variation Solution
Also use a coordinate system, but upon drawing the diagram call the origin and be on the x-axis. Obviously is the vertex on . After labeling coordinates (noting additionally that is an equilateral triangle), we see that the area is times times the ordinate of . Draw a perpendicular of , call it , and note that after using the trig functions for degrees.
Now, get the lines for and : and , whereupon we get the ordinate of to be , and the area is , so our answer is .
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.