Difference between revisions of "1996 AIME Problems/Problem 3"
(→Solution) |
Dgreenb801 (talk | contribs) m (→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | Using [[Simon's Favorite Factoring Trick]], rewrite as <math>[(x-3)(y | + | Using [[Simon's Favorite Factoring Trick]], rewrite as <math>[(x-3)(y+7)]^n = (x-3)^n(y+7)^n</math>. Both [[binomial expansion]]s will contain <math>n+1</math> non-like terms; their product will contain <math>(n+1)^2</math> terms, as each term will have an unique power of <math>x</math> or <math>y</math> and so none of the terms will need to be collected. Hence <math>(n+1)^2 > 1996</math>, the smallest square after <math>1996</math> is <math>2025 = 45^2</math>, so our answer is <math>45 - 1 = 044</math>. |
== See also == | == See also == |
Revision as of 23:13, 5 January 2008
Problem
Find the smallest positive integer for which the expansion of , after like terms have been collected, has at least 1996 terms.
Solution
Using Simon's Favorite Factoring Trick, rewrite as . Both binomial expansions will contain non-like terms; their product will contain terms, as each term will have an unique power of or and so none of the terms will need to be collected. Hence , the smallest square after is , so our answer is .
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |