Difference between revisions of "Orbit-stabilizer theorem"
(short page) |
m (Link to group action article) |
||
Line 1: | Line 1: | ||
The '''orbit-stabilizer theorem''' is a [[combinatorics |combinatorial]] result in [[group theory]]. | The '''orbit-stabilizer theorem''' is a [[combinatorics |combinatorial]] result in [[group theory]]. | ||
− | Let <math>G</math> be a [[group]] acting on a [[set]] <math>S</math>. For any <math>i \in S</math>, let <math>\text{stab}(i)</math> denote the [[stabilizer]] of <math>i</math>, and let <math>\text{orb}(i)</math> denote the [[orbit]] of <math>i</math>. The orbit-stabilizer theorem states that | + | Let <math>G</math> be a [[group]] [[group action|acting]] on a [[set]] <math>S</math>. For any <math>i \in S</math>, let <math>\text{stab}(i)</math> denote the [[stabilizer]] of <math>i</math>, and let <math>\text{orb}(i)</math> denote the [[orbit]] of <math>i</math>. The orbit-stabilizer theorem states that |
<cmath> \lvert G \rvert = \lvert \text{orb}(i) \rvert \cdot \lvert \text{stab}(i) \rvert . </cmath> | <cmath> \lvert G \rvert = \lvert \text{orb}(i) \rvert \cdot \lvert \text{stab}(i) \rvert . </cmath> | ||
Revision as of 18:48, 9 September 2008
The orbit-stabilizer theorem is a combinatorial result in group theory.
Let be a group acting on a set . For any , let denote the stabilizer of , and let denote the orbit of . The orbit-stabilizer theorem states that
Proof. Without loss of generality, let operate on from the right. We note that if are elements of such that , then $\alpha^{-1} \beta \in \stab(i)$ (Error compiling LaTeX. Unknown error_msg). Hence for any , the set of elements of for which constitute a unique left coset modulo . Thus The result then follows from Lagrange's Theorem.