Difference between revisions of "2010 IMO Problems/Problem 4"
(→Solution 2) |
(→Solution 2) |
||
Line 27: | Line 27: | ||
This implies that the tangent at <math>M</math> is parallel to <math>LK</math> and therefore that <math>M</math> is the midpoint of arc <math>LK</math>. Hence <math>MK=ML</math>. | This implies that the tangent at <math>M</math> is parallel to <math>LK</math> and therefore that <math>M</math> is the midpoint of arc <math>LK</math>. Hence <math>MK=ML</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 23:56, 15 July 2010
Problem
Let be a point interior to triangle (with ). The lines , and meet again its circumcircle at , , respectively . The tangent line at to meets the line at . Show that from follows .
Solution
Solution 1
Without loss of generality, suppose that . By Power of a Point, , so is tangent to the circumcircle of . Thus, . It follows that after some angle-chasing, so as desired.
Solution 2
Let the tangent at to intersect at . We now have that since and are both isosceles, . This yields that .
Now consider the power of point with respect to .
Hence by AA similarity, we have that . Combining this with the arc angle theorem yields that . Hence .
This implies that the tangent at is parallel to and therefore that is the midpoint of arc . Hence .
See also
2010 IMO (Problems) • Resources | ||
Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 5 |
All IMO Problems and Solutions |