Bezout's Lemma

Revision as of 01:33, 21 March 2009 by Jam (talk | contribs) (Generalized statement/proof to hold for any nonzero integers)

Bezout's Lemma states that if $x$ and $y$ are nonzero integers and $g = \gcd(x,y)$, then there exist integers $\alpha$ and $\beta$ such that $x\alpha+y\beta=g$. In other words, there exists a linear combination of $x$ and $y$ equal to $g$.

In particular, if $x$ and $y$ are relatively prime then there are integers $\alpha$ and $\beta$ for which $x\alpha+y\beta=1$.

Proof

Let $x = gx_1$, $y = gy_1$, and notice that $\gcd(x_1,y_1) = 1$.

Since $\gcd(x_1,y_1)=1$, $\text{lcm}(x_1,y_1)=x_1y_1$. So $\alpha=y_1$ is smallest positive $\alpha$ for which $x\alpha\equiv 0\pmod{y}$. Now if for all integers $0\le a,b<y_1$, we have that $x_1a\not\equiv x_1b\pmod{y_1}$, then one of those $y_1$ integers must be 1 from the Pigeonhole Principle. Assume for contradiction that $x_1a\equiv x_1b\pmod{y_1}$, and WLOG let $b>a$. Then, $x_1(b-a)\equiv 0\pmod y_1$, and so as we saw above this means $b-a\ge y_1$ but this is impossible since $0\le a,b<y_1$. Thus there exists an $\alpha$ such that $x_1\alpha\equiv 1\pmod{y_1}$.

Therefore $y_1|(x_1\alpha-1)$, and so there exists an integer $\beta$ such that $x_1\alpha - 1 = y_1\beta$, and so $x_1\alpha + y_1\beta = 1$. Now multiplying through by $g$ gives, $gx_1\alpha + gy_1\alpha = g$, or $x\alpha+y\beta = g$.

Thus there does exist integers $\alpha$ and $\beta$ such that $x\alpha+y\beta=g$.

See also

This article is a stub. Help us out by expanding it.