Difference between revisions of "1988 AIME Problems/Problem 7"

(Solution)
(Solution)
Line 5: Line 5:
 
<center>[[Image:AIME_1988_Solution_07.png]]</center>
 
<center>[[Image:AIME_1988_Solution_07.png]]</center>
  
Call <math>\angle BAD</math> <math>\alpha</math> and <math>\angle CAD</math> <math>\beta</math>. So, <math>\tan \alpha = \frac {17}{h}</math> and <math>\tan \beta = \frac {3}{h}</math>. Using the tangent addition formula <math>\tan (\alpha + \beta) = \frac {\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \ beta}</math>, we get <math>\frac {\frac {20}{h}}{\frac {x^2 - 51}{x^2}}</math>.
+
Call <math>\angle BAD</math> <math>\alpha</math> and <math>\angle CAD</math> <math>\beta</math>. So, <math>\tan \alpha = \frac {17}{h}</math> and <math>\tan \beta = \frac {3}{h}</math>. Using the tangent addition formula <math>\tan (\alpha + \beta) = \frac {\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \ beta}</math>, we get <math>\dfrac {\frac {20}{h}}{\frac {x^2 - 51}{x^2}}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 23:20, 20 November 2023

Problem

In triangle $ABC$, $\tan \angle CAB = 22/7$, and the altitude from $A$ divides $BC$ into segments of length 3 and 17. What is the area of triangle $ABC$?

Solution

AIME 1988 Solution 07.png

Call $\angle BAD$ $\alpha$ and $\angle CAD$ $\beta$. So, $\tan \alpha = \frac {17}{h}$ and $\tan \beta = \frac {3}{h}$. Using the tangent addition formula $\tan (\alpha + \beta) = \frac {\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \ beta}$, we get $\dfrac {\frac {20}{h}}{\frac {x^2 - 51}{x^2}}$.

See also

1988 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png