Difference between revisions of "1999 AIME Problems/Problem 4"

(solution, box)
(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The two squares shown share the same center <math>\displaystyle O_{}</math> and have sides of length 1. The length of <math>\displaystyle \overline{AB}</math> is <math>\displaystyle 43/99</math> and the area of octagon <math>\displaystyle ABCDEFGH</math> is <math>\displaystyle m/n,</math> where <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> are relatively prime positive integers.  Find <math>\displaystyle m+n.</math>
+
The two [[square]]s shown share the same [[center]] <math>\displaystyle O_{}</math> and have sides of length 1. The length of <math>\displaystyle \overline{AB}</math> is <math>\displaystyle 43/99</math> and the [[area]] of octagon <math>\displaystyle ABCDEFGH</math> is <math>\displaystyle m/n,</math> where <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> are [[relatively prime]] [[positive]] [[integer]]s.  Find <math>\displaystyle m+n.</math>
  
 
[[Image:AIME_1999_Problem_4.png]]
 
[[Image:AIME_1999_Problem_4.png]]
 
== Solution ==
 
== Solution ==
Define the two possible distances from one of the labeled points and the corners of the square upon which the point lies as <math>x</math> and <math>y</math>. The area of the octagon (by [[subtraction]] of areas) is <math>1 - 4(\frac{1}{2}xy) = 1 - 2xy</math>.  
+
Define the two possible [[distance]]s from one of the labeled points and the [[vertex|corners]] of the square upon which the point lies as <math>x</math> and <math>y</math>. The area of the [[octagon]] (by [[subtraction]] of areas) is <math>1 - 4(\frac{1}{2}xy) = 1 - 2xy</math>.  
  
 
By the [[Pythagorean theorem]],
 
By the [[Pythagorean theorem]],
Line 11: Line 11:
 
Also,
 
Also,
 
:<math>x + y + \frac{43}{99} = 1</math>
 
:<math>x + y + \frac{43}{99} = 1</math>
:<math>x^2 + 2xy + y^2 = (\frac{56}{99})^2</math>
+
:<math>x^2 + 2xy + y^2 = \left(\frac{56}{99}\right)^2</math>
  
 
Substituting,
 
Substituting,
:<math>(\frac{43}{99})^2 + 2xy = (\frac{56}{99})^2</math>
+
:<math>(\frac{43}{99})^2 + 2xy = \left(\frac{56}{99}\right)^2</math>
 
:<math>2xy = \frac{(56 + 43)(56 - 43)}{99^2} = \frac{13}{99}</math>
 
:<math>2xy = \frac{(56 + 43)(56 - 43)}{99^2} = \frac{13}{99}</math>
  
Line 20: Line 20:
  
 
== See also ==
 
== See also ==
* [[1999 AIME Problems]]
+
{{AIME box|year=1999|num-b=3|num-a=5}}
  
{{AIME box|year=1999|num-b=3|num-a=5}}
+
[[Category:Intermediate Geometry Problems]]

Revision as of 19:55, 8 March 2007

Problem

The two squares shown share the same center $\displaystyle O_{}$ and have sides of length 1. The length of $\displaystyle \overline{AB}$ is $\displaystyle 43/99$ and the area of octagon $\displaystyle ABCDEFGH$ is $\displaystyle m/n,$ where $\displaystyle m_{}$ and $\displaystyle n_{}$ are relatively prime positive integers. Find $\displaystyle m+n.$

AIME 1999 Problem 4.png

Solution

Define the two possible distances from one of the labeled points and the corners of the square upon which the point lies as $x$ and $y$. The area of the octagon (by subtraction of areas) is $1 - 4(\frac{1}{2}xy) = 1 - 2xy$.

By the Pythagorean theorem,

$x^2 + y^2 = (\frac{43}{99})^2$

Also,

$x + y + \frac{43}{99} = 1$
$x^2 + 2xy + y^2 = \left(\frac{56}{99}\right)^2$

Substituting,

$(\frac{43}{99})^2 + 2xy = \left(\frac{56}{99}\right)^2$
$2xy = \frac{(56 + 43)(56 - 43)}{99^2} = \frac{13}{99}$

Thus, the area of the octagon is $1 - \frac{13}{99} = \frac{86}{99}$, so $m + n = 185$.

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions