Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

1990 AMC 8
3
AMC 8 1990
1
What is the smallest sum of two $3$-digit numbers that can be obtained by placing each of the six digits $ 4,5,6,7,8,9 $ in one of the six boxes in this addition problem?

[asy]
unitsize(12);
draw((0,0)--(10,0)); draw((-1.5,1.5)--(-1.5,2.5)); draw((-1,2)--(-2,2));
draw((1,1)--(3,1)--(3,3)--(1,3)--cycle); draw((1,4)--(3,4)--(3,6)--(1,6)--cycle);
draw((4,1)--(6,1)--(6,3)--(4,3)--cycle); draw((4,4)--(6,4)--(6,6)--(4,6)--cycle);
draw((7,1)--(9,1)--(9,3)--(7,3)--cycle); draw((7,4)--(9,4)--(9,6)--(7,6)--cycle);[/asy]

$ \text{(A)}\ 947\qquad\text{(B)}\ 1037\qquad\text{(C)}\ 1047\qquad\text{(D)}\ 1056\qquad\text{(E)}\ 1245 $
Mrdavid445
view topic
2
Which digit of $0.12345$, when changed to $9$, gives the largest number?

$ \text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 3\qquad\text{(D)}\ 4\qquad\text{(E)}\ 5 $
Mrdavid445
view topic
3
What fraction of the square is shaded?

[asy]
draw((0,0)--(0,3)--(3,3)--(3,0)--cycle);
draw((0,2)--(2,2)--(2,0)); draw((0,1)--(1,1)--(1,0)); draw((0,0)--(3,3));
fill((0,0)--(0,1)--(1,1)--cycle,grey);
fill((1,0)--(1,1)--(2,2)--(2,0)--cycle,grey);
fill((0,2)--(2,2)--(3,3)--(0,3)--cycle,grey);[/asy]

$ \text{(A)}\ \frac{1}{3}\qquad\text{(B)}\ \frac{2}{5}\qquad\text{(C)}\ \frac{5}{12}\qquad\text{(D)}\ \frac{3}{7}\qquad\text{(E)}\ \frac{1}{2} $
Mrdavid445
view topic
4
Which of the following could not be the unit's digit [one's digit] of the square of a whole number?

$ \text{(A)}\ 1\qquad\text{(B)}\ 4\qquad\text{(C)}\ 5\qquad\text{(D)}\ 6\qquad\text{(E)}\ 8 $
Mrdavid445
view topic
5
Which of the following is closest to the product $ (.48017)(.48017)(.48017) $?

$ \text{(A)}\ 0.011\qquad\text{(B)}\ 0.110\qquad\text{(C)}\ 1.10\qquad\text{(D)}\ 11.0\qquad\text{(E)}\ 110 $
Mrdavid445
view topic
6
Which of these five numbers is the largest?

$ \text{(A)}\ 13579+\frac{1}{2468}\qquad\text{(B)}\ 13579-\frac{1}{2468}\qquad\text{(C)}\ 13579\times\frac{1}{2468} $
$ \text{(D)}\ 13579\div\frac{1}{2468}\qquad\text{(E)}\ 13579.2468 $
Mrdavid445
view topic
7
When three different numbers from the set $ \{-3,-2,-1, 4, 5\} $ are multiplied, the largest possible product is

$ \text{(A)}\ 10\qquad\text{(B)}\ 20\qquad\text{(C)}\ 30\qquad\text{(D)}\ 40\qquad\text{(E)}\ 60 $
Mrdavid445
view topic
8
A dress originally priced at 80 dollars was put on sale for $25\%$ off. If $10\%$ tax was added to the sale price, then the total selling price (in dollars) of the dress was

$ \text{(A)}\ \text{45 dollars}\qquad\text{(B)}\ \text{52 dollars}\qquad\text{(C)}\ \text{54 dollars}\qquad\text{(D)}\ \text{66 dollars}\qquad\text{(E)}\ \text{68 dollars} $
Mrdavid445
view topic
9
The grading scale shown is used at Jones Junior High. The fifteen scores in Mr. Freeman's class were:
\[ \begin{tabular}[t]{lllllllll}89, & 72, & 54, & 97, & 77, & 92, & 85, & 74, & 75,\\ 63, & 84, & 78, & 71, & 80, & 90. & & &\\ \end{tabular} \]
In Mr. Freeman's class, what percent of the students received a grade of C?

\[ \boxed{\begin{tabular}[t]{cc}A: & 93-100\\ B: & 85-92\\ C: & 75-84\\ D: & 70-74\\ F: & 0-69\end{tabular}} \]

$ \text{(A)}\ 20\%\qquad\text{(B)}\ 25\%\qquad\text{(C)}\ 30\%\qquad\text{(D)}\ 33\frac{1}{3}\%\qquad\text{(E)}\ 40\% $
Mrdavid445
view topic
10
On this monthly calendar, the date behind one of the letters is added to the date behind $C$. If this sum equals the sum of the dates behind $A$ and $B$, then the letter is

[asy]
unitsize(12);
draw((1,1)--(23,1));
draw((0,5)--(23,5));
draw((0,9)--(23,9));
draw((0,13)--(23,13));
for(int a=0; a<6; ++a)
{
draw((4a+2,0)--(4a+2,14));
}
label("Tues.",(4,14),N); label("Wed.",(8,14),N); label("Thurs.",(12,14),N);
label("Fri.",(16,14),N); label("Sat.",(20,14),N);
label("C",(12,10.3),N); label("$\textbf{A}$",(16,10.3),N); label("Q",(12,6.3),N);
label("S",(4,2.3),N); label("$\textbf{B}$",(8,2.3),N); label("P",(12,2.3),N);
label("T",(16,2.3),N); label("R",(20,2.3),N);[/asy]

$ \text{(A)}\ \text{P}\qquad\text{(B)}\ \text{Q}\qquad\text{(C)}\ \text{R}\qquad\text{(D)}\ \text{S}\qquad\text{(E)}\ \text{T} $
Mrdavid445
view topic
11
The numbers on the faces of this cube are consecutive whole numbers. The sums of the two numbers on each of the three pairs of opposite faces are equal. The sum of the six numbers on this cube is

[asy]
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
draw((3,3)--(5,5));
label("$15$",(1.5,1.2),N); label("$11$",(4,2.3),N); label("$14$",(2.5,3.7),N);[/asy]

$ \text{(A)}\ 75\qquad\text{(B)}\ 76\qquad\text{(C)}\ 78\qquad\text{(D)}\ 80\qquad\text{(E)}\ 81 $
Mrdavid445
view topic
12
There are twenty-four 4-digit numbers that use each of the four digits 2, 5, 7, and 4exactly once. Listed in numerical order from smallest to largest, the number in the $17th$ position in the list is

$ \text{(A)}\ 4527\qquad\text{(B)}\ 5724\qquad\text{(C)}\ 5742\qquad\text{(D)}\ 7245\qquad\text{(E)}\ 7524 $
Mrdavid445
view topic
13
One proposal for new postage rates for a letter was $30$ cents for the first ounce and $22$ cents for each additional ounce (or fraction of an ounce). The postage for a letter weighing $4.5$ ounces was

$ \text{(A)}\ \text{96 cents}\qquad\text{(B)}\ \text{1.07 dollars}\qquad\text{(C)}\ \text{1.18 dollars}\qquad\text{(D)}\ \text{1.20 dollars}\qquad\text{(E)}\ \text{1.40 dollars} $
Mrdavid445
view topic
14
A bag contains only blue balls and green balls. There are $6$ blue balls. If the probability of drawing a blue ball at random from this bag is $ \frac{1}{4} $, then the number of green balls in the bag is

$ \text{(A)}\ 12\qquad\text{(B)}\ 18\qquad\text{(C)}\ 24\qquad\text{(D)}\ 30\qquad\text{(E)}\ 36 $
Mrdavid445
view topic
15
The area of this figure is $ 100\text{ cm}^{2} $. Its perimeter is


[asy]
draw((0,2)--(2,2)--(2,1)--(3,1)--(3,0)--(1,0)--(1,1)--(0,1)--cycle,linewidth(1));
draw((1,2)--(1,1)--(2,1)--(2,0),dashed);[/asy]

$ \text{(A)}\ \text{20 cm}\qquad\text{(B)}\ \text{25 cm}\qquad\text{(C)}\ \text{30 cm}\qquad\text{(D)}\ \text{40 cm}\qquad\text{(E)}\ \text{50 cm} $
Mrdavid445
view topic
16
$ 1990-1980+1970-1960+\cdots-20+10 = $

$ \text{(A)}\ -990\qquad\text{(B)}\ -10\qquad\text{(C)}\ 990\qquad\text{(D)}\ 1000\qquad\text{(E)}\ 1990 $
Mrdavid445
view topic
17
A straight concrete sidewalk is to be $3$ feet wide, $60$ feet long, and $3$ inches thick. How many cubic yards of concrete must a contractor order for the sidewalk if concrete must be ordered in a whole number of cubic yards?

$ \text{(A)}\ 2\qquad\text{(B)}\ 5\qquad\text{(C)}\ 12\qquad\text{(D)}\ 20\qquad\text{(E)}\ \text{more than 20} $
Mrdavid445
view topic
18
Each corner of a rectangular prism is cut off. Two (of the eight) cuts are shown. How many edges does the new figure have?
[asy]
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
draw((3,0)--(5,2)--(5,5)--(2,5)--(0,3));
draw((3,3)--(5,5));
draw((2,0)--(3,1.8)--(4,1)--cycle,linewidth(1));
draw((2,3)--(4,4)--(3,2)--cycle,linewidth(1));[/asy]

$ \text{(A)}\ 24\qquad\text{(B)}\ 30\qquad\text{(C)}\ 36\qquad\text{(D)}\ 42\qquad\text{(E)}\ 48 $

Assume that the planes cutting the prism do not intersect anywhere in or on the prism.
Mrdavid445
view topic
19
There are $120$ seats in a row. What is the fewest number of seats that must be occupied so the next person to be seated must sit next to someone?

$ \text{(A)}\ 30\qquad\text{(B)}\ 40\qquad\text{(C)}\ 41\qquad\text{(D)}\ 60\qquad\text{(E)}\ 119 $
Mrdavid445
view topic
20
The annual incomes of $1000$ families range from $8200$ dollars to $98000$ dollars. In error, the largest income was entered on the computer as $980000$ dollars. The difference between the mean of the incorrect data and the mean of the actual data is

$ \text{(A)}\ \text{882 dollars}\qquad\text{(B)}\ \text{980 dollars}\qquad\text{(C)}\ \text{1078 dollars}\qquad\text{(D)}\ \text{482,000 dollars}\qquad\text{(E)}\ \text{882,000 dollars} $
Mrdavid445
view topic
21
A list of $8$ numbers is formed by beginning with two given numbers. Each new number in the list is the product of the two previous numbers. Find the first number if the last three are shown:
\[ \text{\underline{\hspace{3 mm}?\hspace{3 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}16\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}64\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{1 mm}1024\hspace{1 mm}}} \]

$ \text{(A)}\ \frac{1}{64}\qquad\text{(B)}\ \frac{1}{4}\qquad\text{(C)}\ 1\qquad\text{(D)}\ 2\qquad\text{(E)}\ 4 $
Mrdavid445
view topic
22
Several students are seated at a large circular table. They pass around a bag containing $100$ pieces of candy. Each person receives the bag, takes one piece of candy and then passes the bag to the next person. If Chris takes the first and last piece of candy, then the number of students at the table could be

$ \text{(A)}\ 10\qquad\text{(B)}\ 11\qquad\text{(C)}\ 19\qquad\text{(D)}\ 20\qquad\text{(E)}\ 25 $
Mrdavid445
view topic
23
The graph relates the distance traveled [in miles] to the time elapsed [in hours] on a trip taken by an experimental airplane. During which hour was the average speed of this airplane the largest?

[asy]
unitsize(12);
for(int a=1; a<13; ++a)
{
draw((2a,-1)--(2a,1)); 
}
draw((-1,4)--(1,4)); draw((-1,8)--(1,8)); draw((-1,12)--(1,12)); draw((-1,16)--(1,16));
draw((0,0)--(0,17));
draw((-5,0)--(33,0));
label("$0$",(0,-1),S); label("$1$",(2,-1),S); label("$2$",(4,-1),S); label("$3$",(6,-1),S);
label("$4$",(8,-1),S); label("$5$",(10,-1),S); label("$6$",(12,-1),S); label("$7$",(14,-1),S);
label("$8$",(16,-1),S); label("$9$",(18,-1),S); label("$10$",(20,-1),S); 
label("$11$",(22,-1),S); label("$12$",(24,-1),S);
label("Time in hours",(11,-2),S);
label("$500$",(-1,4),W); label("$1000$",(-1,8),W); label("$1500$",(-1,12),W); 
label("$2000$",(-1,16),W);
label(rotate(90)*"Distance traveled in miles",(-4,10),W);
draw((0,0)--(2,3)--(4,7.2)--(6,8.5));
draw((6,8.5)--(16,12.5)--(18,14)--(24,15));[/asy]

$ \text{(A)}\ \text{first (0-1)}\qquad\text{(B)}\ \text{second (1-2)}\qquad\text{(C)}\ \text{third (2-3)}\qquad\text{(D)}\ \text{ninth (8-9)}\qquad\text{(E)}\ \text{last (11-12)} $
Mrdavid445
view topic
24
Three $ \Delta $'s and a $ \diamondsuit $ will balance nine $ \bullet $'s. One $ \Delta $ will balance a $ \diamondsuit $ and a $ \bullet $.
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,2)--(-12,0)--(12,0)--(12,2));
draw(ellipse((-12,5),8,3)); draw(ellipse((12,5),8,3));
label("$\Delta \hspace{2 mm}\Delta \hspace{2 mm}\Delta \hspace{2 mm}\diamondsuit $",(-12,6.5),S);
label("$\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm} \bullet $",(12,5.2),N);
label("$\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet $",(12,5.2),S);
fill((44,0)--(40,-2)--(48,-2)--cycle,black);
draw((34,2)--(34,0)--(54,0)--(54,2));
draw(ellipse((34,5),6,3)); draw(ellipse((54,5),6,3));
label("$\Delta $",(34,6.5),S); 
label("$\bullet \hspace{2 mm}\diamondsuit $",(54,6.5),S);[/asy]

How many $ \bullet $'s will balance the two $ \diamondsuit $'s in this balance?
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,4)--(-12,2)--(12,-2)--(12,0));
draw(ellipse((-12,7),6.5,3)); draw(ellipse((12,3),6.5,3));
label("$?$",(-12,8.5),S);
label("$\diamondsuit \hspace{2 mm}\diamondsuit $",(12,4.5),S);[/asy]

$ \text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 3\qquad\text{(D)}\ 4\qquad\text{(E)}\ 5 $
Mrdavid445
view topic
25
How many different patterns can be made by shading exactly two of the nine squares? Patterns that can be matched by flips and/or turns are not considered different. For example, the patterns shown below are not considered different.

[asy]
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,gray); fill((1,2)--(2,2)--(2,3)--(1,3)--cycle,gray);
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle,linewidth(1));
draw((2,0)--(2,3),linewidth(1)); draw((0,1)--(3,1),linewidth(1));
draw((1,0)--(1,3),linewidth(1)); draw((0,2)--(3,2),linewidth(1));
fill((6,0)--(8,0)--(8,1)--(6,1)--cycle,gray);
draw((6,0)--(9,0)--(9,3)--(6,3)--cycle,linewidth(1));
draw((8,0)--(8,3),linewidth(1)); draw((6,1)--(9,1),linewidth(1));
draw((7,0)--(7,3),linewidth(1)); draw((6,2)--(9,2),linewidth(1));
fill((14,1)--(15,1)--(15,3)--(14,3)--cycle,gray);
draw((12,0)--(15,0)--(15,3)--(12,3)--cycle,linewidth(1));
draw((14,0)--(14,3),linewidth(1)); draw((12,1)--(15,1),linewidth(1));
draw((13,0)--(13,3),linewidth(1)); draw((12,2)--(15,2),linewidth(1));
fill((18,1)--(19,1)--(19,3)--(18,3)--cycle,gray);
draw((18,0)--(21,0)--(21,3)--(18,3)--cycle,linewidth(1));
draw((20,0)--(20,3),linewidth(1)); draw((18,1)--(21,1),linewidth(1));
draw((19,0)--(19,3),linewidth(1)); draw((18,2)--(21,2),linewidth(1));[/asy]

$ \text{(A)}\ 3\qquad\text{(B)}\ 6\qquad\text{(C)}\ 8\qquad\text{(D)}\ 12\qquad\text{(E)}\ 18 $
Mrdavid445
view topic
https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright $\copyright$ Mathematical Association of America.
rrusczyk
view topic
a