by ayan.nmath, Feb 12, 2018, 4:28 PM
Problem. In
, let

be a point on segment
. Let

be feet of perpendiculars from

onto

and

respectively. Suppose
, 
and

are concurrent. Let

be diametrically opposite points of

in the circumcircles of triangles

and

respectively. Prove that
, 
and the altitude from

onto

are concurrent.
(Supercali)
SolutionLet

be the midpoint of

where

is the foot of
Altitude.
Note that,

Similarly,
![\[\frac{CF}{FA}=\frac{CD\cos C}{b-CD\cos C}\]](//latex.artofproblemsolving.com/f/f/d/ffd59570fcac16d431a85c6413034a124653d68e.png)
Applying Ceva's theorem,

We also have
![\[CD+BD=a.\]](//latex.artofproblemsolving.com/c/e/6/ce65ca77138d77458a58e29765370fd298252086.png)
Therefore,
![\[BD=\dfrac{a\cos B\cos C-b\cos B+c\cos C}{2\cos B\cos C}\qquad (\spadesuit).\]](//latex.artofproblemsolving.com/a/a/e/aae508a18636cbd55880feadcb439858d5040fee.png)
Consider

it follows that
![\[\angle ABY=90^{\circ}-\angle B,\qquad \angle BAY=\angle EDA=90^{\circ}-\angle BAD\]](//latex.artofproblemsolving.com/2/f/1/2f121dfa27a591ba29cc46bcb54ee8a86ea1c51f.png)
Using Sine Law in

we have,
![\[\frac{c}{\sin\angle BYA}=\frac{YB}{\cos\angle BAD}\]](//latex.artofproblemsolving.com/8/1/1/811abf1229b8e89caa7de668c7f8662477aa7081.png)
Therefore,

Now, note that,
![\[\cos B=\frac{c^2+BD^2-AD^2}{2c\cdot BD}\implies AD^2-BD^2=c^2-2c\cdot BD\cos B\]](//latex.artofproblemsolving.com/8/6/3/86353bd7471d4cf8a2af338a78e62a25d302fda9.png)
Substituting the above in

Consider,

W.L.O.G. assume

Then

We first evaluate the denominator of

since

Putting the above in the denominator of

we get

Thus,
![\[YB=\frac{\Delta}{b\cos C}.\]](//latex.artofproblemsolving.com/6/b/5/6b5701a3a03ef421221c15e6935e2165e57e1c77.png)
Let

Then as
, we have
![\[PB=\frac{a\cdot\tfrac{bc}{4R}}{CA'}=\frac{\Delta}{CA'}=\frac{\Delta}{b\cos C}\]](//latex.artofproblemsolving.com/0/f/1/0f12c7804ab3b5dadfca6dfc5b6eec66ce13f60d.png)
Thus we obtain

Hence

passes through the
midpoint of
altitude.
Similarly,

also passes through the midpoint of

And we are done.
![[asy]import olympiad;
unitsize(1.5cm);
pair A=(0.8,2), B=(0,0), C=(3, 0), D=relpoint(B--C, 0.8), F = foot(D, A, B), E = foot(D, A, C), O_1 = circumcenter(A,B,D), O_2 = circumcenter(A,D,C), Y = rotate(180,O_1)*D, X=rotate(180,O_2)*D, Z, K = foot(A,B,C);
draw(A--B--C--cycle);
draw(D--E, dashed+0.8blue); draw(D--F,dashed+0.8blue);
draw(rightanglemark(D,E,C,4),0.8blue); draw(rightanglemark(D,F,B,4),0.8blue);
path U = circumcircle(A,B,D);
path V = circumcircle(A,C,D);
draw(U, linetype("3 4")+red);draw(V,linetype("3 4")+red);
draw(B--E, linetype("2 4 6 4")+0.7green); draw(C--F, linetype("2 4 6 4")+0.7green); draw(A--D, linetype("2 4 6 4")+0.7green);
dot(intersectionpoint(B--E, C--F),0.7green);
Z = intersectionpoint(B--X,C--Y);
draw(B--X, orange);draw(C--Y, orange);draw(A--K, orange);
draw(rightanglemark(A,K,C, 4), orange);
dot(A);dot(B);dot(C);dot(D,0.8red);dot(E,0.8blue);dot(F,0.8blue);dot(X,0.8red);dot(Y,0.8red);dot(Z, orange);dot(K,orange);
label("$A$", A, dir(120));
label("$B$", B, SW);
label("$C$", C, SE);
label("$D$", D, dir(-75), 0.8red);
label("$E$", E, dir(45),0.8blue);
label("$F$", F, dir(135),0.8blue);
label("$X$", X, dir(45), 0.8red);
label("$Y$", Y, dir(135), 0.8red);
label("$A'$", K, S, orange);
label("$M$", Z, dir(20), orange);[/asy]](//latex.artofproblemsolving.com/5/b/5/5b5c4976812577ada4205dacc53e072392d87212.png)
PS.This problem may be well known or maybe killed by Projective, but still...
This post has been edited 2 times. Last edited by pro_4_ever, Mar 1, 2018, 10:45 AM