Hard inequality

by JK1603JK, May 1, 2025, 3:55 AM

Geometry Proof

by Jackson0423, Apr 30, 2025, 4:17 PM

In triangle \( \triangle ABC \), point \( P \) on \( AB \) satisfies \( DB = BC \) and \( \angle DCA = 30^\circ \).
Let \( X \) be the point where the perpendicular from \( B \) to line \( DC \) meets the angle bisector of \( \angle BCA \).
Then, the relation \( AD \cdot DC = BD \cdot AX \) holds.

Prove that \( \triangle ABC \) is an isosceles triangle.

Do not try to case bash lol

by ItzsleepyXD, Apr 30, 2025, 9:08 AM

Let $n,d\geqslant 6$ be a positive integer such that $d\mid 6^{n!}+1$ .
Prove that $d>2n+6$ .

Or statement function

by ItzsleepyXD, Apr 30, 2025, 9:07 AM

Find all $f: \mathbb{R} \to \mathbb{Z^+}$ such that $$f(x+f(y))=f(x)+f(y)+1\quad\text{ or }\quad f(x)+f(y)-1$$for all real number $x$ and $y$

Trivial fun Equilateral

by ItzsleepyXD, Apr 30, 2025, 9:05 AM

Let $ABC$ be a scalene triangle with point $P$ and $Q$ on the plane such that $\triangle BPC , \triangle CQB$ is an equilateral . Let $AB$ intersect $CP$ and $CQ$ at $X$ and $Z$ respectively and $AC$ intersect $BP$ and $BQ$ at $Y$ and $W$ respectively .
Prove that $XY\parallel ZW$

BMO 2024 SL A5

by MuradSafarli, Apr 27, 2025, 12:44 PM

Let \(\mathbb{R}^+ = (0, \infty)\) be the set of positive real numbers.
Find all non-negative real numbers \(c \geq 0\) such that there exists a function \(f : \mathbb{R}^+ \to \mathbb{R}^+\) with the property:
\[
f(y^2f(x) + y + c) = xf(x+y^2)
\]for all \(x, y \in \mathbb{R}^+\).

Arbitrary point on BC and its relation with orthocenter

by falantrng, Apr 27, 2025, 11:47 AM

In an acute-angled triangle \(ABC\), \(H\) be the orthocenter of it and \(D\) be any point on the side \(BC\). The points \(E, F\) are on the segments \(AB, AC\), respectively, such that the points \(A, B, D, F\) and \(A, C, D, E\) are cyclic. The segments \(BF\) and \(CE\) intersect at \(P.\) \(L\) is a point on \(HA\) such that \(LC\) is tangent to the circumcircle of triangle \(PBC\) at \(C.\) \(BH\) and \(CP\) intersect at \(X\). Prove that the points \(D, X, \) and \(L\) lie on the same line.

Proposed by Theoklitos Parayiou, Cyprus
This post has been edited 1 time. Last edited by falantrng, Apr 27, 2025, 4:38 PM

Something nice

by KhuongTrang, Nov 1, 2023, 12:56 PM

Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
This post has been edited 2 times. Last edited by KhuongTrang, Nov 19, 2023, 11:59 PM

N lines cutting each other in the plane

by M.J.Espinas, May 5, 2016, 7:00 PM

Let $l_1,l_2,l_3,...,L_n$ be lines in the plane such that no two of them are parallel and no three of them are concurrent. Let $A$ be the intersection point of lines $l_i,l_j$. We call $A$ an "Interior Point" if there are points $C,D$ on $l_i$ and $E,F$ on $l_j$ such that $A$ is between $C,D$ and $E,F$. Prove that there are at least $\frac{(n-2)(n-3)}{2}$ Interior points.($n>2$)
note: by point here we mean the points which are intersection point of two of $l_1,l_2,...,l_n$.
This post has been edited 1 time. Last edited by M.J.Espinas, May 5, 2016, 7:01 PM

APMO 2015 P1

by aditya21, Mar 30, 2015, 8:17 AM

Let $ABC$ be a triangle, and let $D$ be a point on side $BC$. A line through $D$ intersects side $AB$ at $X$ and ray $AC$ at $Y$ . The circumcircle of triangle $BXD$ intersects the circumcircle $\omega$ of triangle $ABC$ again at point $Z$ distinct from point $B$. The lines $ZD$ and $ZY$ intersect $\omega$ again at $V$ and $W$ respectively.
Prove that $AB = V W$

Proposed by Warut Suksompong, Thailand
This post has been edited 1 time. Last edited by djmathman, Apr 5, 2015, 3:46 PM

You can either Bash or Think..... Choose Wisely

avatar

pro_4_ever
Shouts
Submit
  • Hey, what a nice blog!!!!! :D

    by Power_Set, Jun 24, 2018, 9:53 PM

  • Is your blog dead ? No new post in almost 2 months.

    My blog has died due to malnutrition of problems. :P

    by integrated_JRC, May 2, 2018, 5:52 AM

  • @ below, I will do it soon

    by pro_4_ever, Mar 1, 2018, 10:37 AM

  • Hi, I think we should 'hide' our solutions, as it is difficult to go up and down the blog :D

    by Drunken_Master, Mar 1, 2018, 10:36 AM

  • Yeah, I created a test blog, it seems to be an AoPS problem not CSS, can't do anything about it. I'll post it in site support forum later.

    by Vrangr, Feb 20, 2018, 5:48 AM

  • The problem is not in the CSS, I believe, as the CSS only looks after the appearance of the blog, and not the $\text{\LaTeX}$ rendering.

    by WizardMath, Feb 19, 2018, 11:34 PM

  • I'll fix the CSS after boards of need be (I'll probably be starting my own blog too then)

    by Vrangr, Feb 19, 2018, 4:41 PM

  • @ below,
    Pls ask WizardMath...
    The CSS is taken from his amazing Blog, "An Olympiad Journey"...
    I know nothing abt programming.
    (BTW I got permission for taking the CSS. No Copyright Issues!)

    by pro_4_ever, Feb 19, 2018, 4:16 PM

  • Huge flaw in website design: comment gets erased if while typing $\LaTeX$ has an error and needs to be fixed.

    by Vrangr, Feb 19, 2018, 12:26 PM

  • Upon WizardMath's Request, let us all post synthetic solutions. Well, let's declare that this blog is intended to give the reader some good problems with simple synthetic solutions. All the best. Not trying to be rude,but I might delete upcoming Bashes :)

    by pro_4_ever, Feb 13, 2018, 4:50 PM

  • Here's an idea. Ban all bashes on this blog from now on. Also try posting your own previous geo solutions as storage (I hope this is allowed). This would make the quality of the blog better. Bashes are basically write-once, read-never things. Why bother?

    by WizardMath, Feb 13, 2018, 4:33 PM

  • Somebody type Egmo 2013 Problem 1.
    No bash,purely troll problem.:)

    by QWERTYphysics, Feb 13, 2018, 4:11 PM

  • I hate having to see a pure geometry blog being swamped to death with bashes.

    Obviously a bash is a super terrible idea. Don't do one.
    Unless you are bad at synthetic.

    by WizardMath, Feb 13, 2018, 2:58 PM

  • @ayan Done:)

    by pro_4_ever, Feb 13, 2018, 1:38 PM

  • 9th shout :P

    by MEGAKNIGHT, Feb 13, 2018, 11:23 AM

  • @below Pls don't post a bash if you are thinking about posting a new entry!

    by pro_4_ever, Feb 13, 2018, 11:11 AM

  • Wait, I thought bash is frowned upon in this blog.

    by WizardMath, Feb 12, 2018, 6:57 PM

  • Hmmm...
    Combi Geometry is accepted...

    by pro_4_ever, Feb 10, 2018, 7:32 AM

  • Can we post Combi here?

    by ayan.nmath, Feb 10, 2018, 7:31 AM

  • Parag dey

    by Paragdey12, Feb 6, 2018, 1:17 PM

  • More posts please :icecream:

    by AnArtist, Feb 6, 2018, 2:38 AM

  • Second Shout!

    by ccx09, Feb 3, 2018, 9:20 PM

  • 1st shout! :D

    by AnArtist, Jan 31, 2018, 9:20 AM

23 shouts
Tags
About Owner
  • Posts: 261
  • Joined: Sep 1, 2016
Blog Stats
  • Blog created: Jan 30, 2018
  • Total entries: 18
  • Total visits: 1105
  • Total comments: 34
Search Blog
a