We bury the problem by using barycentric w.r.t
.
We compute

, and as

is inside the triangle, let

. Let

. We get the displacement vector

. The condition that length of

is equal to

implies



. Now observe that only the positive root satisfies
, hence

, where we defined
. So,

, and analgously,

, hence

. Now, the displacement vector (after normalization) equates to

. Now, we need to show that the lenght of this displacemnt vector is symmetric in

and
, which should complete the proof. But
![$$ Length[MN]^2 = \frac{b^2d^2}{(c^2+d(a+b)+x^2)^2}[\frac{Terms}{ (c^2+x^2+ad)^2 } ]$$](//latex.artofproblemsolving.com/9/9/3/993362f4272a430655e3c7698a5b8b6eae7ef7c0.png)
, where

![$$ = a^2 [ (a^2+b^2+x^2+ad)^2 - b^4-b^2a^2-2b^2x^3+b^2d^2] = a^2[(c^2+x^2+ad)^2 - b^2(b^2+a^2+2x^2-d^2)] = a^2[(c^2+x^2+ad)^2 - b^2(d^2-d^2)] = a^2(c^2+x^2+ad)^2$$](//latex.artofproblemsolving.com/b/5/3/b5321d5e1e51f787c8c6bf10745668b9680e2b07.png)
, so we finally get
![$$ Length [MN]^2 = \frac{b^2d^2}{(c^2+d(a+b)+x^2)^2}[\frac{Terms}{ (c^2+x^2+ad)^2 } ] = \frac{b^2d^2}{(c^2+d(a+b)+x^2)^2}[\frac{a^2(c^2+x^2+ad)^2}{ (c^2+x^2+ad)^2 } ] = \frac{a^2b^2d^2}{(c^2+d(a+b)+x^2)^2}$$](//latex.artofproblemsolving.com/d/6/6/d66a4469629d93af5941d5b1eec6585529fe73ff.png)
, and as of course it's symmetric in

and
, we finish the proof.