#10) Orthocenter and Circumcenter on the Incircle.
by ayan.nmath, Feb 13, 2018, 11:46 AM
Problem. If the orthocenter
and the circumcenter
lie on the incircle of
prove that this triangle is unique and one of it's angles is 
(Lonesan)
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(14cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -11.56, xmax = 11.56, ymin = -8.04, ymax = 8.04; /* image dimensions */pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902); /* draw figures */draw(circle((-1.47,0.54), 6.618194617869741), linewidth(0.8) + linetype("4 4") + rvwvcq); draw((3.3824279616279336,5.040493625949423)--(-7.16,-2.84), linewidth(2) + wrwrwr); draw((-7.16,-2.84)--(4.307449273562116,-2.688247185612742), linewidth(2) + wrwrwr); draw((3.3824279616279336,5.040493625949423)--(4.307449273562116,-2.688247185612742), linewidth(2) + wrwrwr); draw(circle((1.2264297598997855,0.009779353729876573), 2.7385589808979787), linewidth(1.2) + dtsfsf); draw((xmin, 2.333357360032656*xmin-2.8519195530953714)--(xmax, 2.333357360032656*xmax-2.8519195530953714), linewidth(1.2) + linetype("4 4") + sexdts); /* line */ /* dots and labels */dot((-1.47,0.54),dotstyle); label("$O$", (-1.38,0.74), NE * labelscalefactor); dot((-7.16,-2.84),dotstyle); label("$B$", (-7.08,-2.64), NE * labelscalefactor); dot((4.307449273562116,-2.688247185612742),dotstyle); label("$A$", (4.38,-2.48), NE * labelscalefactor); dot((3.3824279616279336,5.040493625949423),dotstyle); label("$C$", (3.46,5.24), NE * labelscalefactor); dot((1.2264297598997855,0.009779353729876573),linewidth(4pt) + dotstyle); label("$I$", (1.3,0.16), NE * labelscalefactor); dot((3.469877235190048,-1.5677535596633183),linewidth(4pt) + dotstyle); label("$H$", (3.54,-1.4), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy]](//latex.artofproblemsolving.com/8/9/1/891b4de8fa68ae5581ff80ecd7f93e77598400c9.png)
Solution




(Lonesan)
![[asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */import graph; size(14cm); real labelscalefactor = 0.5; /* changes label-to-point distance */pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -11.56, xmax = 11.56, ymin = -8.04, ymax = 8.04; /* image dimensions */pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen dtsfsf = rgb(0.8274509803921568,0.1843137254901961,0.1843137254901961); pen sexdts = rgb(0.1803921568627451,0.49019607843137253,0.19607843137254902); /* draw figures */draw(circle((-1.47,0.54), 6.618194617869741), linewidth(0.8) + linetype("4 4") + rvwvcq); draw((3.3824279616279336,5.040493625949423)--(-7.16,-2.84), linewidth(2) + wrwrwr); draw((-7.16,-2.84)--(4.307449273562116,-2.688247185612742), linewidth(2) + wrwrwr); draw((3.3824279616279336,5.040493625949423)--(4.307449273562116,-2.688247185612742), linewidth(2) + wrwrwr); draw(circle((1.2264297598997855,0.009779353729876573), 2.7385589808979787), linewidth(1.2) + dtsfsf); draw((xmin, 2.333357360032656*xmin-2.8519195530953714)--(xmax, 2.333357360032656*xmax-2.8519195530953714), linewidth(1.2) + linetype("4 4") + sexdts); /* line */ /* dots and labels */dot((-1.47,0.54),dotstyle); label("$O$", (-1.38,0.74), NE * labelscalefactor); dot((-7.16,-2.84),dotstyle); label("$B$", (-7.08,-2.64), NE * labelscalefactor); dot((4.307449273562116,-2.688247185612742),dotstyle); label("$A$", (4.38,-2.48), NE * labelscalefactor); dot((3.3824279616279336,5.040493625949423),dotstyle); label("$C$", (3.46,5.24), NE * labelscalefactor); dot((1.2264297598997855,0.009779353729876573),linewidth(4pt) + dotstyle); label("$I$", (1.3,0.16), NE * labelscalefactor); dot((3.469877235190048,-1.5677535596633183),linewidth(4pt) + dotstyle); label("$H$", (3.54,-1.4), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy]](http://latex.artofproblemsolving.com/8/9/1/891b4de8fa68ae5581ff80ecd7f93e77598400c9.png)
Solution
Proof of the fact that one of it's angle is
.
Denote the incircle by
Let
be the reflection of
upon
Note that
since
Also,
lies on the isogonal of of the line
which means
Therefore,
is one of the intersections of
and
(i.e.
).
Case 1.
In this case we are almost done because
Case 2.
but 
Let
be the relfection of
upon
Let
be the second intersection of the altitude with
be the second intersection of
Since in this case
Hence
because
must lie on
But
by assumption of this case. Which is absurd because
intersects
Hence this case is not possible.
And we are done.
Proof of uniqueness.
Assume the contrary that there are two such triangles. Without loss of generality assume they are with the same circumcircle. We know by the above proof that one of it's angles is
so they have a side of equal length. Place the equal sides as chords of the circle such that they coincide, let the chord be 
Note that,
Hence
lies on circle
So as we move
along the arc
traces along the arc
of
Drop a perpendicular from
to side
, clearly the length of this perpendicular is
(inradius). By Euler's Formula, we have
Since we fixed the circumradius of both the triangles, hence
is some fixed quantity. Now as we vary
along the arc
of
moves along
of
It is now easy to see that
attains it's fixed value determined by
twice(it is more easier if we drop a perp from
to
), Precisely, one of the triangles is the relfection of the other along the perpendicular bisector of
Which are considered the same, and we reach a contradiction to our assumption. And we are done.


Denote the incircle by













Case 1.

In this case we are almost done because

Case 2.


Let














And we are done.

Proof of uniqueness.
Assume the contrary that there are two such triangles. Without loss of generality assume they are with the same circumcircle. We know by the above proof that one of it's angles is


Note that,
![\[\angle AIB=\angle 90^{\circ}+\frac{60^{\circ}}{2}=120^{\circ}=\angle AOB\]](http://latex.artofproblemsolving.com/0/b/0/0b0cf8b2055883b2c2c664182c0d684296f9c456.png)










![\[R^2-2Rr=r^2\implies r=\mbox{ fixed quantity in terms of R} (1)\]](http://latex.artofproblemsolving.com/4/b/8/4b8a075dab2bf8bb03160a83d0c6207e19158584.png)













This post has been edited 4 times. Last edited by pro_4_ever, Mar 12, 2018, 9:58 AM