Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
Thursday at 11:16 PM
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Thursday at 11:16 PM
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
minimum of \sqrt{\frac{a}{b(3a+2)}}+\sqrt{\frac{b}{a(3b+2)}}
parmenides51   10
N 2 minutes ago by Tomilovedoingmath
Source: JBMO Shortlist 2017 A2
Let $a$ and $b$ be positive real numbers such that $3a^2 + 2b^2 = 3a + 2b$. Find the minimum value of $A =\sqrt{\frac{a}{b(3a+2)}} + \sqrt{\frac{b}{a(2b+3)}} $
10 replies
parmenides51
Jul 25, 2018
Tomilovedoingmath
2 minutes ago
Comics and triangles in perspective
srirampanchapakesan   0
14 minutes ago
Source: Own
Let a conic intersect the sides BC, CA, AB of triangle ABC at A1,A2,B1,B2,C1,C2.

T1 is the triangle formed by A1B2, B1C2, and C1A2.

T2 is the triangle formed by A2B1, B2C1 and C2A1.

Prove that the triangles ABC, T1 and T2 are pair-wise in perspective.

Also prove that all three centers of perspective coincide.
0 replies
srirampanchapakesan
14 minutes ago
0 replies
inequalities
Cobedangiu   1
N 15 minutes ago by xytunghoanh
$a,b,c>0$ and $\sum ab=\dfrac{1}{3}$. Prove that:
$\sum \dfrac{1}{a^2-bc+1}\le 3$
1 reply
Cobedangiu
27 minutes ago
xytunghoanh
15 minutes ago
this geo is scarier than the omega variant
AwesomeYRY   10
N 16 minutes ago by GrantStar
Source: TSTST 2021/6
Triangles $ABC$ and $DEF$ share circumcircle $\Omega$ and incircle $\omega$ so that points $A,F,B,D,C,$ and $E$ occur in this order along $\Omega$. Let $\Delta_A$ be the triangle formed by lines $AB,AC,$ and $EF,$ and define triangles $\Delta_B, \Delta_C, \ldots, \Delta_F$ similarly. Furthermore, let $\Omega_A$ and $\omega_A$ be the circumcircle and incircle of triangle $\Delta_A$, respectively, and define circles $\Omega_B, \omega_B, \ldots, \Omega_F, \omega_F$ similarly.

(a) Prove that the two common external tangents to circles $\Omega_A$ and $\Omega_D$ and the two common external tangents to $\omega_A$ and $\omega_D$ are either concurrent or pairwise parallel.

(b) Suppose that these four lines meet at point $T_A$, and define points $T_B$ and $T_C$ similarly. Prove that points $T_A,T_B$, and $T_C$ are collinear.

Nikolai Beluhov
10 replies
1 viewing
AwesomeYRY
Dec 13, 2021
GrantStar
16 minutes ago
3-var inequality
sqing   1
N 21 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 0 ,a+b+c =4. $ Prove that
$$a +ab^2 +ab^2c \leq\frac{33}{4}+2\sqrt 2$$$$a +ab^2 +abc \leq \frac{2(100+13\sqrt {13})}{27}$$$$a +a^2b + a b^2c^3\leq \frac{2(82+19\sqrt {19})}{27}$$
1 reply
sqing
37 minutes ago
sqing
21 minutes ago
Hard to approach it !
BogG   128
N 26 minutes ago by alexanderchew
Source: Swiss Imo Selection 2006
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
128 replies
BogG
May 25, 2006
alexanderchew
26 minutes ago
A nice and easy gem off of StackExchange
NamelyOrange   1
N 27 minutes ago by NamelyOrange
Source: https://math.stackexchange.com/questions/3818796/
Define $S$ as the set of all numbers of the form $2^i5^j$ for some nonnegative $i$ and $j$. Find (with proof) all pairs $(m,n)$ such that $m,n\in S$ and $m-n=1$.


Rephrased: Solve $2^a5^b-2^c5^d=1$ over $(\mathbb{N}_0)^4$, and prove that your solution(s) is/are the only one(s).
1 reply
NamelyOrange
Yesterday at 8:13 PM
NamelyOrange
27 minutes ago
Popular children at camp with algebra and geometry
Assassino9931   1
N 29 minutes ago by internationalnick123456
Source: RMM Shortlist 2024 C3
Fix an odd integer $n\geq 3$. At a maths camp, there are $n^2$ children, each of whom selects
either algebra or geometry as their favourite topic. At lunch, they sit at $n$ tables, with $n$ children
on each table, and start talking about mathematics. A child is said to be popular if their favourite
topic has a majority at their table. For dinner, the students again sit at $n$ tables, with $n$ children
on each table, such that no two children share a table at both lunch and dinner. Determine the
minimal number of young mathematicians who are popular at both mealtimes. (The minimum is across all sets of topic preferences and seating arrangements.)
1 reply
Assassino9931
5 hours ago
internationalnick123456
29 minutes ago
3-var inequality
sqing   0
an hour ago
Source: Own
Let $ a,b,c\geq 0 ,a+b+c =1. $ Prove that
$$\frac{ab}{2c+1} +\frac{bc}{2a+1} +\frac{ca}{2b+1}+\frac{27}{20} abc\leq \frac{1}{4} $$
0 replies
sqing
an hour ago
0 replies
Inspired by giangtruong13
sqing   3
N an hour ago by sqing
Source: Own
Let $ a,b \geq 0 $ and $a^3-b^3=2 $.Prove that $$ a^2-ab+b^2 \geq   \sqrt[3]{2}  $$Let $ a,b \geq 0 $ and $a^3+b^3=2 $.Prove that $$ 3\geq a^2+ab+b^2 \geq   \sqrt[3]{4}  $$
3 replies
sqing
2 hours ago
sqing
an hour ago
Very easy case of a folklore polynomial equation
Assassino9931   2
N an hour ago by luutrongphuc
Source: Bulgaria EGMO TST 2025 P6
Determine all polynomials $P(x)$ of odd degree with real coefficients such that $P(x^2 + 2025) = P(x)^2 + 2025$.
2 replies
Assassino9931
5 hours ago
luutrongphuc
an hour ago
Something nice
KhuongTrang   30
N 2 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
30 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
2 hours ago
Tangency geo
Assassino9931   1
N 2 hours ago by sami1618
Source: RMM Shortlist 2024 G1
Let $ABC$ be an acute triangle with $\angle ABC > 45^{\circ}$ and $\angle ACB > 45^{\circ}$. Let $M$ be the midpoint of the side $BC$. The circumcircle of triangle $ABM$ intersects the side $AC$ again at $X\neq A$ and the circumcircle of triangle $ACM$ intersects the side $AB$ again at $Y\neq A$. The point $P$ lies on the perpendicular bisector of the segment $BC$ so that the points $P$ and $A$ lie on the same side of $XY$ and $\angle XPY = 90^{\circ} + \angle BAC$. Prove that the circumcircles of triangles $BPY$ and $CPX$ are tangent.
1 reply
Assassino9931
6 hours ago
sami1618
2 hours ago
Removing cell to tile with L tetromino
ItzsleepyXD   1
N 2 hours ago by internationalnick123456
Source: [not own] , Mock Thailand Mathematic Olympiad P4
Consider $2025\times 2025$ Define a cell with $\textit{Nice}$ property if after remove that cell from the board The board can be tile with $L$ tetromino.
Find the number of position of $\textit{Nice}$ cell $\newline$ Note: $L$ tetromino can be rotated but not flipped
1 reply
ItzsleepyXD
Apr 30, 2025
internationalnick123456
2 hours ago
Diagonal of a convex polygon
Leon   2
N Sep 24, 2006 by perfect_radio
Source: 2002 Austrian-Polish, problem 2
Let $P_{1}P_{2}\dots P_{2n}$ be a convex polygon with an even number of corners. Prove that there exists a diagonal $P_{i}P_{j}$ which is not parallel to any side of the polygon.
2 replies
Leon
Sep 23, 2006
perfect_radio
Sep 24, 2006
Diagonal of a convex polygon
G H J
G H BBookmark kLocked kLocked NReply
Source: 2002 Austrian-Polish, problem 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Leon
256 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $P_{1}P_{2}\dots P_{2n}$ be a convex polygon with an even number of corners. Prove that there exists a diagonal $P_{i}P_{j}$ which is not parallel to any side of the polygon.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jastrzab
99 posts
#2 • 2 Y
Y by Adventure10, Mango247
Suppose that for every $i,j$ , $P_{ij}$ is parallel to one of the sides of a polygon. We have $(2n-3) n$ diagonals, and only $2n$ sides, which means that there is a side which is parallel to at least $n-1$ diagonals, thus these $n-1$ digonals are pairwise parallel, which means that they cannot share a common end. So these diagonals give us $2(n-1)$ different enpoints. Together with our chosen side, this gives us $2n$ different endpionts (obvoiusly these diagonals cannot share a common endpoint with our side), which are all vertex of our polygon. Thus one of our diagonals must be a side of the polygon ( impossible because of assumption about convexity)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
perfect_radio
2607 posts
#3 • 2 Y
Y by Adventure10, Mango247
The same problem is here.
Z K Y
N Quick Reply
G
H
=
a