Loading [MathJax]/extensions/Safe.js

Stay ahead of learning milestones! Enroll in a class over the summer!

 
1
First Name: Cruz
2
Last Name: Arnzen
3
UIN: $868755043$
4
Problem $1$
5
We know that if all three of the primes are odd then: \[
6
pq+qr+rp\equiv1+1+1\equiv1\pmod2,
7
\]
8
while
9
\[
10
p+q+r+2025\equiv1+1+1+1\equiv0\pmod2,
11
\]
12
which obviously doesn't make sense.
13
We know that every prime other than $2$ is congruent to $1\pmod{2}$.
14
We also know if all of them are odd then\[
15
pq+qr+rp \;\equiv\;1\cdot1 + 1\cdot1 + 1\cdot1 \;=\;3 \;\equiv\;1\pmod2,
16
\]
17
while
18
\[
19
p+q+r+2025 \;\equiv\;1+1+1 +\,2025\pmod2.
20
\]
21
Since $2025$ is odd one side would be odd while the other side is even which again doesn't make sense since we said earlier that this applies to all primes except $2$, we know $2$ is one of the primes. 
22
We can just say $p=2$.
23
Now we can just plug in giving us: $pq+qr+rp = 2q+qr+2r = q\,r+2(q+r),$ and
24
$p+q+r+2025 = 2+q+r+2025 = q+r+2027$. So
25
$qr+2(q+r)=q+r+2027
26
\quad\Longrightarrow\quad
27
qr+q+r=2027
28
\quad\Longrightarrow\quad
29
(q+1)(r+1)=2028.$
30
Since we know, $q$ and $r$ are primes we can use the prime factorization $2028=2^2\cdot 3\cdot 13^2$.
31
Now we can just check the divisors.
32
After checking, we see that the only way that they're both prime is if $q+1=6,\ r+1=338
33
\quad\Longrightarrow\quad
34
q=5,\ r=337.$
35
So we get our final answer of $$p+q+r=2+5+337=\boxed{344}.$$
36
37
First Name: Cruz
38
Last Name: Arnzen
39
UIN: $868755043$
40
Problem $2$
41
42
We can just factor it giving: $(mn-1 + m - n)\,(mn-1 - m + n)
43
\;=\;(mn-1)^2 \;-\;(m-n)^2
44
\;=\;2025\,.$
45
Now we can set $x = mn-1,\quad y = m-n,$
46
then
47
$x^2 - y^2 = 2025
48
\quad\Longrightarrow\quad
49
(x+y)(x-y)=2025.$
50
We know that the prime factorization of $2025=3^4\cdot5^2.$
51
We will  look at all of its odd divisors: $\pm1,\pm3,\pm5,\pm9,\pm15,\pm25,\pm27,\pm45,\pm75,\pm135,\pm225,\pm675,\pm2025.$
52
We can now use some clever algebra by using the fact that we know that $x+y=A,\quad x-y=B,\quad A\,B=2025.$ 
53
From this, we can easily get $x=\frac{A+B}2,\quad y=\frac{A-B}2$.
54
Now we can find $(m,n)$ by solving these equations: $mn = x+1,\quad m-n=y.$
55
By checking all divisors we find the solutions to be: $$(m,n)\;=\;
56
\bigl(\pm26,\pm2\bigr)
57
\quad\text{or}\quad
58
\bigl(\pm2,\pm26\bigr).$$
59
60
First Name: Cruz
61
Last Name: Arnzen
62
UIN: $868755043$
63
Problem $3$
64
65
Let $x = \text{number of correct answers},
66
y = \text{number of wrong answers}.$
67
Then $x+y\le90$ and the score is
68
$S \;=\;4x-2y \;=\;2\,(2x-y)\;=\;2t,$
69
where $t=2x-y.$
70
Our minimum is when $x=0,\;y=90:
71
t_{\min}=0-90=-90.$
72
Our maximum is when $x=90,\;y=0:
73
t_{\max}=180.$
74
So $t$ could be any integer in $[-90,180]$.
75
We see that every integer $x+y\le90$ in our range produces a positive solution, except $t=179\,\Longrightarrow S=2\cdot179=358$,
76
which needs one too many questions to be answered.
77
All of the even integers from $-180 \text{ to } 360$ inclusive:
78
$\frac{360-(-180)}2+1=271$ values.
79
Getting rid of the score gives us: $270$.
80
81
First Name: Cruz
82
Last Name: Arnzen
83
UIN: $868755043$
84
Problem $4$
85
86
We see that the discriminant is $D = 6^2 - 4\cdot n\cdot(-2025) = 36 + 8100\,n = 36\bigl(225n+1\bigr).$
87
88
We know that for $D$ to be a perfect square, $225n+1$ must be a perfect square. We can let $225n+1 = m^2,\quad m\in\mathbb{Z}^+
89
\;\Longrightarrow\;
90
n = \frac{m^2-1}{225}.$
91
Solving $(m^2\equiv1\pmod{225})$ gives the smallest normal solution $m=26$ plugging this in gives $n = \frac{26^2 - 1}{225} = \frac{675}{225} = 3.$ 
92
So the least positive integer $n$ is
93
$\boxed{3}.$ Number of integer $x$ with $f_3(x)<0$
94
For $n=3$, 
95
$f_3(x) = 3x^2 + 6x -2025 = 3\,(x-25)(x+27).$
96
So there are $51$ values between our bounds $[-25,27]$ , which is our answer.
97
98
First Name: Cruz
99
Last Name: Arnzen
100
UIN: $868755043$
101
Problem $5$
102
103
Since we know that $\text{MATH}$ is a four‑digit number,
104
$1000M \le MATH < 1000(M+1).$
105
If $M\ge2$, then $MATH\ge2000$, so
106
$CLE+VER+MATH\;\ge\; CLE+VER+2000\;\ge\;2000+ (100+100)\;=\;2200>2025,$
107
which is just impossible.
108
So $M=1$ and we see that $\text{MATH} = 1000 + D,\quad D=100A+10T+H.$
109
Now we can plug it in giving us: $\text{CLE + VER} + (1000 + \text{D}) = 2025
110
\quad\Longrightarrow\quad
111
\text{CLE + VER + D} = 1025.$
112
We can set $S=\text{CLE+VER}$ which is what we want to minimize.
113
We know that the two smallest integers available aside from $1$ are $2,3$ so we have $\text{CLE + VER} \;\ge\; 200+\dots +300+\dots \;=\;500+\dots$ we will use these as the leading digits.
114
With some trial and error we find $$CLE=250,\quad VER=307
115
\qquad\Longrightarrow\qquad
116
S = 250+307 = 557.$$
117
Subtracting gives us our final answer of $$1468.$$
118
119
120
First Name: Cruz
121
Last Name: Arnzen
122
UIN: $868755043$
123
Problem $6$
124
125
We can let $A = \sqrt{x^2 + 2025x - 1},\quad
126
B = \sqrt{x^2 + 25x - 1}.$ 
127
128
We know $A - B = 50$ so $A = B + 50.$
129
We can just square both sides $x^2 + 2025x -1 \;=\;(B+50)^2 = B^2 + 100B + 2500.$
130
Since we know $B^2 = x^2 + 25x -1,$
131
We see that $x^2 + 2025x -1 = x^2 + 25x -1 + 100B + 2500
132
\quad\Longrightarrow\quad
133
2000x = 100B + 2500
134
\quad\Longrightarrow\quad
135
B = 20x - 25.$
136
We can square again now $x^2 + 25x -1 = (20x - 25)^2
137
\;\Longrightarrow\;
138
399x^2 -1025x +626 =0.$
139
The discriminant is $\Delta =1025^2 -4\cdot399\cdot626 =227^2, so
140
x = \frac{1025\pm 227}{2\cdot399}
141
\;=\;\frac{1025+227}{798}= \frac{1252}{798}=\frac{626}{399}
142
\quad\text{or}\quad
143
\frac{1025-227}{798}=1.$
144
We will check both solutions now to make sure they are not extraneous. After we check both, we find that $x=1$ IS extraneous but $x=\dfrac{626}{399}$ is not.
145
So our solution is $x=\dfrac{626}{399}.$
146
147
First Name: Cruz
148
Last Name: Arnzen
149
UIN: $868755043$
150
Problem $7$
151
152
We know with Ptolemy’s theorem cyclic quadrilateral $ABCD$ diagonals satisfy
153
$AC\cdot BD = AB\cdot CD + BC\cdot DA = 2\cdot7 + 6\cdot9 = 14 + 54 = 68.$
154
We can use the fact that $\angle B + \angle D = 180^\circ$ in a cyclic quadrilateral, we see  see by the Law of Cosines in $\triangle ABC$ and $\triangle ADC$ that
155
$AC^2 = \frac{272}{5},$
156
so $AC = \sqrt{\frac{272}{5}} = \frac{4\sqrt{85}}{5}.$
157
So we know $BD = \frac{68}{AC} = \frac{68}{\frac{4\sqrt{85}}5}
158
= \sqrt{85}.$
159
We can see that $AC + BD = \frac{4\sqrt{85}}5 + \sqrt{85}
160
= \frac{9\sqrt{85}}5
161
= \frac{153}{\sqrt{85}}.$
162
We can now add our two values giving us $238.$
163
164
First Name: Cruz
165
Last Name: Arnzen
166
UIN: $868755043$
167
Problem $8$
168
169
We can $x = \sqrt{a + 8b},\quad
170
y = \sqrt{b + 8c},\quad
171
z = \sqrt{c + 8a}.$
172
We know that $x,y,z\ge0.$
173
\[
174
\begin{cases}
175
a + 8b = x^2,\\
176
b + 8c = y^2,\\
177
c + 8a = z^2.
178
\end{cases}
179
\]
180
Solving this linear system  gets us
181
$a = \frac{x^2 - 8y^2 + 64z^2}{513},\quad
182
b = \frac{64x^2 + y^2 - 8z^2}{513},\quad
183
c = \frac{-8x^2 + 64y^2 + z^2}{513}.$
184
We see $a + b + c \;=\;\frac{x^2+y^2+z^2}{9}.$
185
We can now rearrange the original equation giving $x + 4y + z
186
\;=\;\dfrac{x^2+y^2+z^2 + 18}{2}.$
187
Rearranging again gives us $x^2 -2x \;+\; y^2 -8y \;+\; z^2 -2z \;+\;18 \;=\;0.$
188
Now we can complete squares to give us $(x-1)^2 + (y-4)^2 + (z-1)^2 \;=\;0.$
189
This shows us that the only possible values are $x=1,\quad y=4,\quad z=1.$
190
Plugging it back in gives us $a=\frac{1 -128 +64}{513}=-\frac{7}{57},\quad
191
b=\frac{64 +16 -8}{513}=\frac{8}{57},\quad
192
c=\frac{-8 +1024 +1}{513}=\frac{113}{57}.$
193
We can check and all the radicals are real, so we're done!
194
195
First Name: Cruz
196
Last Name: Arnzen
197
UIN: $868755043$
198
Problem $9$
199
200
We know the equation
201
$m^3 + n^3 \;=\; 91\,m n \;-\;2025$
202
is symmetric in $m,n$.  If $m=n$, it becomes
203
$2m^3 \;=\;91m^2 \;-\;2025.$
204
From here, I'm not quite sure what to do, but we could probably rearrange and test values. 
205
206
207
First Name: Cruz
208
Last Name: Arnzen
209
UIN: $868755043$
210
Problem $10$
211
212
I believe we must use the Erdos Ginzburg Ziv theorem. 

Hey, it looks like you're using a mobile phone or small device! TeXeR works best on a larger screen, so please visit this page from a desktop or tablet.

Enter your LaTeX code in the editor panel on the left.

When you are ready to compile your document, click one of the options at the top.

Image: Renders as a PNG image. Suitable for short equations. Hint: Use Ctrl-Enter to recompile an image after making changes.

bbCode: Render with bbCode. This is similar to writing posts in the AoPS community or on your AoPS blog. You can use this to test your message before posting to the forum or your blog. bbCode rendering auto-updates if you stop typing for a short period of time.

MathJax: Render the document with MathJax, a client side LaTeX compiler. MathJax rendering auto-updates if you stop typing for a short period of time. MathJax does not support Asymptote.

PDF: Render document as a PDF file. You must have a PDF viewer to view the compiled document.

6 7