# 2012 USAMO Problems/Problem 5

## Problem

Let $P$ be a point in the plane of triangle $ABC$, and $\gamma$ a line passing through $P$. Let $A'$, $B'$, $C'$ be the points where the reflections of lines $PA$, $PB$, $PC$ with respect to $\gamma$ intersect lines $BC$, $AC$, $AB$, respectively. Prove that $A'$, $B'$, $C'$ are collinear.

## Solution

By the sine law on triangle $AB'P$, $$\frac{AB'}{\sin \angle APB'} = \frac{AP}{\sin \angle AB'P},$$ so $$AB' = AP \cdot \frac{\sin \angle APB'}{\sin \angle AB'P}.$$

$[asy] import graph; import geometry; unitsize(0.5 cm); pair[] A, B, C; pair P, R; A[0] = (2,12); B[0] = (0,0); C[0] = (14,0); P = (4,5); R = 5*dir(70); A[1] = extension(B[0],C[0],P,reflect(P + R,P - R)*(A[0])); B[1] = extension(C[0],A[0],P,reflect(P + R,P - R)*(B[0])); C[1] = extension(A[0],B[0],P,reflect(P + R,P - R)*(C[0])); draw((P - R)--(P + R),red); draw(A[1]--B[1]--C[1]--cycle,blue); draw(A[0]--B[0]--C[0]--cycle); draw(A[0]--P); draw(B[0]--P); draw(C[0]--P); draw(P--A[1]); draw(P--B[1]); draw(P--C[1]); draw(A[1]--B[0]); draw(A[1]--B[0]); label("A", A[0], N); label("B", B[0], S); label("C", C[0], SE); dot("A'", A[1], SW); dot("B'", B[1], NE); dot("C'", C[1], W); dot("P", P, SE); label("\gamma", P + R, N); [/asy]$

Similarly, \begin{align*} B'C &= CP \cdot \frac{\sin \angle CPB'}{\sin \angle CB'P}, \\ CA' &= CP \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P}, \\ A'B &= BP \cdot \frac{\sin \angle BPA'}{\sin \angle BA'P}, \\ BC' &= BP \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P}, \\ C'A &= AP \cdot \frac{\sin \angle APC'}{\sin \angle AC'P}. \end{align*} Hence, \begin{align*} &\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} \\ &= \frac{\sin \angle APB'}{\sin \angle AB'P} \cdot \frac{\sin \angle CB'P}{\sin \angle CPB'} \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P} \cdot \frac{\sin \angle BA'P}{\sin \angle BPA'} \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P} \cdot \frac{\sin \angle AC'P}{\sin \angle APC'}. \end{align*}

Since angles $\angle AB'P$ and $\angle CB'P$ are supplementary or equal, depending on the position of $B'$ on $AC$, $$\sin \angle AB'P = \sin \angle CB'P.$$ Similarly, \begin{align*} \sin \angle CA'P &= \sin \angle BA'P, \\ \sin \angle BC'P &= \sin \angle AC'P. \end{align*}

By the reflective property, $\angle APB'$ and $\angle BPA'$ are supplementary or equal, so $$\sin \angle APB' = \sin \angle BPA'.$$ Similarly, \begin{align*} \sin \angle CPA' &= \sin \angle APC', \\ \sin \angle BPC' &= \sin \angle CPB'. \end{align*} Therefore, $$\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} = 1,$$ so by Menelaus's theorem, $A'$, $B'$, and $C'$ are collinear.

## Solution 2, Barycentric (Modified by Evan Chen)

We will perform barycentric coordinates on the triangle $PCC'$, with $P=(1,0,0)$, $C'=(0,1,0)$, and $C=(0,0,1)$. Set $a = CC'$, $b = CP$, $c = C'P$ as usual. Since $A$, $B$, $C'$ are collinear, we will define $A = (p : k : q)$ and $B = (p : \ell : q)$.

Claim: Line $\gamma$ is the angle bisector of $\angle APA'$, $\angle BPB'$, and $\angle CPC'$. This is proved by observing that since $A'P$ is the reflection of $AP$ across $\gamma$, etc.

Thus $B'$ is the intersection of the isogonal of $B$ with respect to $\angle P$ with the line $CA$; that is, $$B' = \left( \frac pk \frac{b^2}{\ell}: \frac{b^2}{\ell} : \frac{c^2}{q} \right).$$ Analogously, $A'$ is the intersection of the isogonal of $A$ with respect to $\angle P$ with the line $CB$; that is, $$A' = \left( \frac{p}{\ell} \frac{b^2}{k} : \frac{b^2}{k} : \frac{c^2}{q} \right).$$ The ratio of the first to third coordinate in these two points is both $b^2pq : c^2k\ell$, so it follows $A'$, $B'$, and $C'$ are collinear.

~peppapig_