# Binomial Theorem

The Binomial Theorem states that for real or complex $a$, $b$, and non-negative integer $n$, $(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is a binomial coefficient. In other words, the coefficients when $(a + b)^n$ is expanded and like terms are collected are the same as the entries in the $n$th row of Pascal's Triangle.

For example, $(a + b)^5 = a^5 + 5 a^4 b + 10 a^3 b^2 + 10 a^2 b^3 + 5 a b^4 + b^5$, with coefficients $1 = \binom{5}{0}$, $5 = \binom{5}{1}$, $10 = \binom{5}{2}$, etc.

## Proof

There are a number of different ways to prove the Binomial Theorem, for example by a straightforward application of mathematical induction. The Binomial Theorem also has a nice combinatorial proof:

We can write $(a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}$. Repeatedly using the distributive property, we see that for a term $a^m b^{n-m}$, we must choose $m$ of the $n$ terms to contribute an $a$ to the term, and then each of the other $n-m$ terms of the product must contribute a $b$. Thus, the coefficient of $a^m b^{n-m}$ is the number of ways to choose $m$ objects from a set of size $n$, or $\binom{n}{m}$. Extending this to all possible values of $m$ from $0$ to $n$, we see that $(a+b)^n = \sum_{m=0}^{n}{\binom{n}{m}}\cdot a^m\cdot b^{n-m}$, as claimed.

Similarly, the coefficients of $(x+y)^n$ will be the entries of the $n^\text{th}$ row of Pascal's Triangle. This is explained further in the Counting and Probability textbook [AoPS].

### Proof via Induction

Given the constants $a,b,n$ are all natural numbers, it's clear to see that $(a+b)^{1} = a+b$. Assuming that $(a+b)^{n} = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}$, $$(a+b)^{n+1} = (\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k})(a+b)$$ $$=(\binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2}+\cdots+\binom{n}{n}a^{0}b^{n})(a+b)$$ $$=(\binom{n}{0}a^{n+1}b^{0} + \binom{n}{1}a^{n}b^{1} + \binom{n}{2}a^{n-1}b^{2}+\cdots+\binom{n}{n}a^{1}b^{n}) + (\binom{n}{0}a^{n}b^{1} + \binom{n}{1}a^{n-1}b^{2} + \binom{n}{2}a^{n-2}b^{3}+\cdots+\binom{n}{n}a^{0}b^{n+1})$$ $$=(\binom{n}{0}a^{n+1}b^{0} + (\binom{n}{0}+\binom{n}{1})(a^{n}b^{1}) + (\binom{n}{1}+\binom{n}{2})(a^{n-1}b^{2})+\cdots+(\binom{n}{n-1}+\binom{n}{n})(a^{1}b^{n})+\binom{n}{n}a^{0}b^{n+1})$$ $$=\binom{n+1}{0}a^{n+1}b^{0} + \binom{n+1}{1}a^{n}b^{1} + \binom{n+1}{2}a^{n-1}b^{2}+\cdots+\binom{n+1}{n}a^{1}b^{n} + \binom{n+1}{n+1}a^{0}b^{n+1}$$ $$=\sum_{k=0}^{n+1}\binom{n+1}{k}a^{(n+1)-k}b^{k}$$ Therefore, if the theorem holds under $n+1$, it must be valid. (Note that $\binom{n}{m} + \binom{n}{m+1} = \binom{n+1}{m+1}$ for $m\leq n$)

## Generalizations

The Binomial Theorem was generalized by Isaac Newton, who used an infinite series to allow for complex exponents: For any real or complex $a$, $b$, and $r$, $(a+b)^r = \sum_{k=0}^{\infty}\binom{r}{k}a^{r-k}b^k$.

### Proof

Consider the function $f(b)=(a+b)^r$ for constants $a,r$. It is easy to see that $\frac{d^k}{db^k}f=r(r-1)\cdots(r-k+1)(a+b)^{r-k}$. Then, we have $\frac{d^k}{db^k}f(0)=r(r-1)\cdots(r-k+1)a^{r-k}$. So, the Taylor series for $f(b)$ centered at $0$ is $$(a+b)^r=\sum_{k=0}^\infty \frac{r(r-1)\cdots(r-k+1)a^{r-k}b^k}{k!}=\sum_{k=0}^\infty \binom{r}{k}a^{r-k}b^k.$$

## Usage

Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial $x^5+4x^4+6x^3+4x^2+x$, one could factor it as such: $x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}$. It is a good idea to be familiar with binomial expansions, including knowing the first few binomial coefficients.