Domain (ring theory)

In ring theory, a ring $A$ is a domain if $ab = 0$ implies that $a=0$ or $b=0$, for all $a,b \in A$. Equivalently, $A$ is a domain if it has no zero divisors. If $A$ is commutative, it is called an integral domain.

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS