Location of Roots Theorem

(Redirected from Location of roots theorem)

The location of roots theorem is one of the most intutively obvious properties of continuous functions, as it states that if a continuous function attains positive and negative values, it must have a root (i.e. it must pass through 0).

Statement

Let $f:[a,b]\rightarrow\mathbb{R}$ be a continuous function such that $f(a)<0$ and $f(b)>0$. Then there is some $c\in (a,b)$ such that $f(c)=0$.

Proof

Let $A=\{x|x\in [a,b],\; f(x)<0\}$

As $a\in A$, $A$ is non-empty. Also, as $A\subset [a,b]$, $A$ is bounded

Thus $A$ has a least upper bound, $\sup A = u \in A.$

If $f(u)<0$:

As $f$ is continuous at $u$, $\exists\delta>0$ such that $x\in V_{\delta}(u)\implies f(x)<0$, which contradicts (1).

Also if $f(u)>0$:

$f$ is continuous imples $\exists\delta>0$ such that $x\in V_{\delta}(u)\implies f(x)>0$, which again contradicts (1) by the Gap lemma.

Hence, $f(u)=0$.

See Also