Maxwell's Equations

(Redirected from Maxwell's equations)

Maxwell's equations are a set of four equations that govern electricity and magnetism in physics.

They are as follows:

  • $\oiint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{enc}}{\varepsilon_0} \text{V} \cdot \text{m}$ (Gauss's law of electricity),
  • $\oiint \mathbf{B} \cdot d\mathbf{A} = 0 \text{Wb}$ (Gauss's law of magnetism),
  • $\oint \mathbf{E} \cdot d\mathbf{\ell} = -\frac{d}{dt} \iint \mathbf{B} \cdot d\mathbf{A} \text{V}$ (Faraday's law),
  • $\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0I + \mu_0\varepsilon_0 \frac{d}{dt}\iint \mathbf{E} \cdot d\mathbf{A} \text{T} \cdot \text{m}$ (Ampere's law).

Where: $\mathbf{E}$ is the electric field in $\frac{\text{V}}{\text{m}}$, $\mathbf{B}$ is the magnetic field in $\text{T}$, $\varepsilon_0$ is the electric permittivity constant in $\frac{\text{F}}{\text{m}}$, $\mu_0$ is the magnetic permeability constant in $\frac{\text{H}}{\text{m}}$, $I$ is electric current in $\text{A}$, $q_{enc}$ is the electric charge in $\text{C}$, and $t$ is time in $\text{s}$. This article is a stub. Help us out by expanding it.