Polynomial Remainder Theorem
In algebra, the Polynomial Remainder Theorem states that the remainder upon dividing any polynomial by a linear polynomial , both with complex coefficients, is equal to .
Proof
By polynomial division with dividend and divisor , that exist a quotient and remainder such that with . We wish to show that is equal to the constant . Because , . Therefore, , and so the is a constant.
Let this constant be . We may substitute this into our original equation and rearrange to yield When , this equation becomes . Hence, the remainder upon diving by is equal to .
Generalization
The strategy used in the above proof can be generalized to divisors with degree greater than . A more general method, with any dividend and divisor , is to write , and then substitute the zeroes of to eliminate and find values of . Example 2 showcases this strategy.
Examples
Here are some problems with solutions that utilize the Polynomial Remainder Theorem and its generalization.
Example 1
What is the remainder when is divided by ?
Solution: Although one could use long or synthetic division, the Polynomial Remainder Theorem provides a significantly shorter solution. Note that , and . A common mistake is to forget to flip the negative sign and assume , but simplifying the linear equation yields . Thus, the answer is , or , which is equal to . .