Search results

  • ...}</math>, so the sum of these elements is <math>\sum_{i=0}^{5} {2i \choose i} = 1 + 2 +6 + 20 + 70 + 252 = 351</math>. ...ted the <math>44</math> numbers from <math>2004</math> to <math>2^{11}-1 = 2047</math>. Indeed, all of these numbers have at least <math>6</math> <math>1</
    4 KB (651 words) - 18:42, 7 October 2023
  • For <math>n = 10</math>, <math>B = 2^{11}-1 = 2047 \equiv 47 \pmod{1000}</math> by the geometric sequence formula. {{AIME box|year=2009|n=I|num-b=7|num-a=9}}
    3 KB (389 words) - 10:12, 16 August 2024