Search results
Create the page "SSS Similarity" on this wiki! See also the search results found.
Page title matches
- <math>\text{SSS Similarity states that if there are two triangles (shown below), then if }\dfrac{\over [[Category:Similarity]]795 bytes (113 words) - 13:02, 29 December 2023
Page text matches
- ...th>ED = DF</math>, so <math>\dfrac{BD}{ED} = \dfrac{DC}{DF}</math>. By SAS similarity, <math>\triangle BDC \sim \triangle EDF</math>. <math>MD</math> is a median3 KB (488 words) - 13:05, 15 December 2022
- ...ed in green). They are midsegments to their corresponding sides. Using SAS Similarity Postulate, we can see that <math>\Delta CFE \sim \Delta CAB</math> and like ...tionship between these segment lengths, <math>\Delta ABC \sim \Delta EFD (SSS)</math> with similar ratio 2:1. The area ratio is then 4:1; this tells us4 KB (596 words) - 16:09, 9 May 2024
- ==Determining Similarity== ...gle|angles]] are the same, the triangles are similar by [[AA similarity|AA Similarity]]. Note that by the Triangle Angle Theorem, the third corresponding angle2 KB (373 words) - 10:54, 21 December 2024
- * [[Similarity (geometry)]] * [[SAS similarity]]982 bytes (158 words) - 11:04, 21 September 2024
- By SSS Congruency, <math>\triangle ACD \cong \triangle CAB</math>. Since the area ...Theorem, <math>\angle EAB = \angle AED = \angle CEX_1</math>. Thus, by AA Similarity, <math>\triangle X_2BA \sim \triangle X_3DE \sim \triangle X_1CE</math>.5 KB (984 words) - 23:01, 1 October 2018
- ...h>X</math> be the intersection of <math>MN</math> and <math>PR.</math> By SSS Congruency, <math>\triangle POQ \cong \triangle QON \cong \triangle NOR,</m ...le PRS,</math> making <math>\triangle PRY \sim \triangle MOS</math> by SAS Similarity.7 KB (1,181 words) - 19:41, 17 April 2022
- Let <math>E</math> be the midpoint of <math>CD</math>. By SSS Congruency, <math>\triangle OCE \cong \triangle ODE</math>. Thus, <math>\a ...th>AB</math>, and let <math>F</math> be the point of intersection. By SAS Similarity, <math>\triangle AOB \sim \triangle COD</math>, so <math>\angle BAO = \angl4 KB (710 words) - 13:01, 23 December 2019
- ...angle D'BC \cong \triangle D'B'C</math> by [[SSS similarity|side-side-side similarity]]. Then <math>\angle D'AC = \angle D'AE' = \angle D'B'E' = \angle D'B'C = \2 KB (411 words) - 21:01, 24 September 2020
- ==Solution 5 (Similarity and Circle Geometry)== By AA Similarity, <math>\triangle ABG \sim \triangle DEG</math> with a ratio of <math>2:1</m11 KB (1,777 words) - 08:43, 10 November 2024
- <math>\text{SSS Similarity states that if there are two triangles (shown below), then if }\dfrac{\over [[Category:Similarity]]795 bytes (113 words) - 13:02, 29 December 2023