Difference between revisions of "Arcticturn Prep"

(Problem 9)
(Problem 11)
 
(23 intermediate revisions by the same user not shown)
Line 15: Line 15:
  
 
<asy> unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23),  G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("$A$", A, W*r); label("$B$", B, S*r); label("$C$", C, S*r); label("$D$", D, E*r); label("$E$", EE, E*r); label("$F$", F, N*r); label("$G$", G, N*r); label("$H$", H, W*r); label("$J$", J, W*r); </asy>
 
<asy> unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23),  G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("$A$", A, W*r); label("$B$", B, S*r); label("$C$", C, S*r); label("$D$", D, E*r); label("$E$", EE, E*r); label("$F$", F, N*r); label("$G$", G, N*r); label("$H$", H, W*r); label("$J$", J, W*r); </asy>
 +
 +
Note: Homothety
 +
 +
==Problem 13==
 +
 +
Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is <math>\dfrac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 +
==Problem 6==
 +
 +
Let <math>N</math> be the number of complex numbers <math>z</math> with the properties that <math>|z|=1</math> and <math>z^{6!}-z^{5!}</math> is a real number. Find the remainder when <math>N</math> is divided by <math>1000</math>.
 +
 +
==Problem 9==
 +
 +
Find the number of four-element subsets of <math>\{1,2,3,4,\dots, 20\}</math> with the property that two distinct elements of a subset have a sum of <math>16</math>, and two distinct elements of a subset have a sum of <math>24</math>. For example, <math>\{3,5,13,19\}</math> and <math>\{6,10,20,18\}</math> are two such subsets.
 +
 +
==Problem 10==
 +
 +
The wheel shown below consists of two circles and five spokes, with a label at each point where a spoke meets a circle. A bug walks along the wheel, starting at point <math>A</math>. At every step of the process, the bug walks from one labeled point to an adjacent labeled point. Along the inner circle the bug only walks in a counterclockwise direction, and along the outer circle the bug only walks in a clockwise direction. For example, the bug could travel along the path <math>AJABCHCHIJA</math>, which has <math>10</math> steps. Let <math>n</math> be the number of paths with <math>15</math> steps that begin and end at point <math>A.</math> Find the remainder when <math>n</math> is divided by <math>1000</math>.
 +
 +
<asy> size(6cm);  draw(unitcircle); draw(scale(2) * unitcircle); for(int d = 90; d < 360 + 90; d += 72){ draw(2 * dir(d) -- dir(d)); }  dot(1 * dir( 90), linewidth(5)); dot(1 * dir(162), linewidth(5)); dot(1 * dir(234), linewidth(5)); dot(1 * dir(306), linewidth(5)); dot(1 * dir(378), linewidth(5)); dot(2 * dir(378), linewidth(5)); dot(2 * dir(306), linewidth(5)); dot(2 * dir(234), linewidth(5)); dot(2 * dir(162), linewidth(5)); dot(2 * dir( 90), linewidth(5));  label("$A$", 1 * dir( 90), -dir( 90)); label("$B$", 1 * dir(162), -dir(162)); label("$C$", 1 * dir(234), -dir(234)); label("$D$", 1 * dir(306), -dir(306)); label("$E$", 1 * dir(378), -dir(378)); label("$F$", 2 * dir(378), dir(378)); label("$G$", 2 * dir(306), dir(306)); label("$H$", 2 * dir(234), dir(234)); label("$I$", 2 * dir(162), dir(162)); label("$J$", 2 * dir( 90), dir( 90)); </asy>
 +
 +
==Problem 5==
 +
 +
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are <math>189</math>, <math>320</math>, <math>287</math>, <math>234</math>, <math>x</math>, and <math>y</math>. Find the greatest possible value of <math>x+y</math>.
 +
 +
==Problem 9==
 +
 +
A special deck of cards contains <math>49</math> cards, each labeled with a number from <math>1</math> to <math>7</math> and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and <math>\textit{still}</math> have at least one card of each color and at least one card with each number is <math>\frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
 +
 +
==Problem 11==
 +
 +
Five towns are connected by a system of roads. There is exactly one road connecting each pair of towns. Find the number of ways there are to make all the roads one-way in such a way that it is still possible to get from any town to any other town using the roads (possibly passing through other towns on the way).
 +
 +
Note: Complimentary counting + PiE
 +
 +
==Problem 13==
 +
 +
For each integer <math>n\geq3</math>, let <math>f(n)</math> be the number of <math>3</math>-element subsets of the vertices of a regular <math>n</math>-gon that are the vertices of an isosceles triangle (including equilateral triangles). Find the sum of all values of <math>n</math> such that <math>f(n+1)=f(n)+78</math>.
 +
 +
==Problem 5==
 +
A moving particle starts at the point <math>(4,4)</math> and moves until it hits one of the coordinate axes for the first time. When the particle is at the point <math>(a,b)</math>, it moves at random to one of the points <math>(a-1,b)</math>, <math>(a,b-1)</math>, or <math>(a-1,b-1)</math>, each with probability <math>\tfrac{1}{3}</math>, independently of its previous moves. The probability that it will hit the coordinate axes at <math>(0,0)</math> is <math>\tfrac{m}{3^n}</math>, where <math>m</math> and <math>n</math> are positive integers, and <math>m</math> is not divisible by <math>3</math>. Find <math>m + n</math>.
 +
 +
Note: recursion with probability
 +
 +
==Problem 6==
 +
In convex quadrilateral <math>KLMN</math>, side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>.
 +
 +
==Problem 14==
 +
Find the least odd prime factor of <math>2019^8 + 1</math>.
 +
 +
Note: Use FLT
 +
 +
==Problem 8==
 +
Find the number of sets <math>\{a,b,c\}</math> of three distinct positive integers with the property that the product of <math>a,b,</math> and <math>c</math> is equal to the product of <math>11,21,31,41,51,</math> and <math>61</math>.
 +
 +
==Problem 10==
 +
Triangle <math>ABC</math> is inscribed in circle <math>\omega</math>. Points <math>P</math> and <math>Q</math> are on side <math>\overline{AB}</math> with <math>AP<AQ</math>. Rays <math>CP</math> and <math>CQ</math> meet <math>\omega</math> again at <math>S</math> and <math>T</math> (other than <math>C</math>), respectively. If <math>AP=4,PQ=3,QB=6,BT=5,</math> and <math>AS=7</math>, then <math>ST=\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
 +
 +
==Problem 6==
 +
In <math>\triangle ABC</math> let <math>I</math> be the center of the inscribed circle, and let the bisector of <math>\angle ACB</math> intersect <math>\overline{AB}</math> at <math>L</math>. The line through <math>C</math> and <math>L</math> intersects the circumscribed circle of <math>\triangle ABC</math> at the two points <math>C</math> and <math>D</math>. If <math>LI=2</math> and <math>LD=3</math>, then <math>IC= \frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find <math>p+q</math>.
 +
 +
Note: angle chase, then angle bisectors.
 +
 +
==Problem 7==
 +
For integers <math>a</math> and <math>b</math> consider the complex number<cmath>\frac{\sqrt{ab+2016}}{ab+100}-\left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.</cmath>Find the number of ordered pairs of integers <math>(a,b)</math> such that this complex number is a real number.
 +
 +
Note: <math>ab \neq -100</math> and beware of absolute value sign
 +
 +
==Problem 9==
 +
Triangle <math>ABC</math> has <math>AB=40,AC=31,</math> and <math>\sin{A}=\frac{1}{5}</math>. This triangle is inscribed in rectangle <math>AQRS</math> with <math>B</math> on <math>\overline{QR}</math> and <math>C</math> on <math>\overline{RS}</math>. Find the maximum possible area of <math>AQRS</math>.
 +
 +
Use: <asy>  size(400); import olympiad; import geometry;  pair A = (0, 20) ,B=(30,10) ,C=(15,0), Q=(30,20) ,R=(30,0), S=(0,0);  draw(A--B--C--cycle); draw(A--Q); draw(Q--R); draw(R--S); draw(S--A);  label("$A$", A, W);  label("$B$", B, E); label("$C$", C, N); label("$Q$", Q, E); label("$R$", R, E); label("$S$", S, W);  label("$w$", (-1,10)); label("$l$", (15,21)); label("$y$", (7.5,-1)); label("$x$", (31,15)); label("$31$",(7.5,10), E); label("$40$",(15,15), N);  markangle(Label("$\alpha$", Relative(0.5)), n=1, C, A, B); markangle(Label("$\beta$", Relative(0.5)), n=1, B, A, Q); markangle(Label("$\gamma$", Relative(0.5)), n=1, S, A, C);    </asy>
 +
 +
==Problem 12==
 +
Find the least positive integer <math>m</math> such that <math>m^2 - m + 11</math> is a product of at least four not necessarily distinct primes.
 +
 +
Note: <math>m</math> should be multiple of <math>11</math>.

Latest revision as of 23:00, 21 June 2024

Problem 5

Suppose that $x$, $y$, and $z$ are complex numbers such that $xy = -80 - 320i$, $yz = 60$, and $zx = -96 + 24i$, where $i$ $=$ $\sqrt{-1}$. Then there are real numbers $a$ and $b$ such that $x + y + z = a + bi$. Find $a^2 + b^2$.

Problem 6

A real number $a$ is chosen randomly and uniformly from the interval $[-20, 18]$. The probability that the roots of the polynomial

\[x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2\] are all real can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Problem 9

Octagon $ABCDEFGH$ with side lengths $AB = CD = EF = GH = 10$ and $BC = DE = FG = HA = 11$ is formed by removing 6-8-10 triangles from the corners of a $23$ $\times$ $27$ rectangle with side $\overline{AH}$ on a short side of the rectangle, as shown. Let $J$ be the midpoint of $\overline{AH}$, and partition the octagon into 7 triangles by drawing segments $\overline{JB}$, $\overline{JC}$, $\overline{JD}$, $\overline{JE}$, $\overline{JF}$, and $\overline{JG}$. Find the area of the convex polygon whose vertices are the centroids of these 7 triangles.

[asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23),  G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("$A$", A, W*r); label("$B$", B, S*r); label("$C$", C, S*r); label("$D$", D, E*r); label("$E$", EE, E*r); label("$F$", F, N*r); label("$G$", G, N*r); label("$H$", H, W*r); label("$J$", J, W*r); [/asy]

Note: Homothety

Problem 13

Misha rolls a standard, fair six-sided die until she rolls 1-2-3 in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 6

Let $N$ be the number of complex numbers $z$ with the properties that $|z|=1$ and $z^{6!}-z^{5!}$ is a real number. Find the remainder when $N$ is divided by $1000$.

Problem 9

Find the number of four-element subsets of $\{1,2,3,4,\dots, 20\}$ with the property that two distinct elements of a subset have a sum of $16$, and two distinct elements of a subset have a sum of $24$. For example, $\{3,5,13,19\}$ and $\{6,10,20,18\}$ are two such subsets.

Problem 10

The wheel shown below consists of two circles and five spokes, with a label at each point where a spoke meets a circle. A bug walks along the wheel, starting at point $A$. At every step of the process, the bug walks from one labeled point to an adjacent labeled point. Along the inner circle the bug only walks in a counterclockwise direction, and along the outer circle the bug only walks in a clockwise direction. For example, the bug could travel along the path $AJABCHCHIJA$, which has $10$ steps. Let $n$ be the number of paths with $15$ steps that begin and end at point $A.$ Find the remainder when $n$ is divided by $1000$.

[asy] size(6cm);  draw(unitcircle); draw(scale(2) * unitcircle); for(int d = 90; d < 360 + 90; d += 72){ draw(2 * dir(d) -- dir(d)); }  dot(1 * dir( 90), linewidth(5)); dot(1 * dir(162), linewidth(5)); dot(1 * dir(234), linewidth(5)); dot(1 * dir(306), linewidth(5)); dot(1 * dir(378), linewidth(5)); dot(2 * dir(378), linewidth(5)); dot(2 * dir(306), linewidth(5)); dot(2 * dir(234), linewidth(5)); dot(2 * dir(162), linewidth(5)); dot(2 * dir( 90), linewidth(5));  label("$A$", 1 * dir( 90), -dir( 90)); label("$B$", 1 * dir(162), -dir(162)); label("$C$", 1 * dir(234), -dir(234)); label("$D$", 1 * dir(306), -dir(306)); label("$E$", 1 * dir(378), -dir(378)); label("$F$", 2 * dir(378), dir(378)); label("$G$", 2 * dir(306), dir(306)); label("$H$", 2 * dir(234), dir(234)); label("$I$", 2 * dir(162), dir(162)); label("$J$", 2 * dir( 90), dir( 90)); [/asy]

Problem 5

A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are $189$, $320$, $287$, $234$, $x$, and $y$. Find the greatest possible value of $x+y$.

Problem 9

A special deck of cards contains $49$ cards, each labeled with a number from $1$ to $7$ and colored with one of seven colors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one card with each number, the probability that Sharon can discard one of her cards and $\textit{still}$ have at least one card of each color and at least one card with each number is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 11

Five towns are connected by a system of roads. There is exactly one road connecting each pair of towns. Find the number of ways there are to make all the roads one-way in such a way that it is still possible to get from any town to any other town using the roads (possibly passing through other towns on the way).

Note: Complimentary counting + PiE

Problem 13

For each integer $n\geq3$, let $f(n)$ be the number of $3$-element subsets of the vertices of a regular $n$-gon that are the vertices of an isosceles triangle (including equilateral triangles). Find the sum of all values of $n$ such that $f(n+1)=f(n)+78$.

Problem 5

A moving particle starts at the point $(4,4)$ and moves until it hits one of the coordinate axes for the first time. When the particle is at the point $(a,b)$, it moves at random to one of the points $(a-1,b)$, $(a,b-1)$, or $(a-1,b-1)$, each with probability $\tfrac{1}{3}$, independently of its previous moves. The probability that it will hit the coordinate axes at $(0,0)$ is $\tfrac{m}{3^n}$, where $m$ and $n$ are positive integers, and $m$ is not divisible by $3$. Find $m + n$.

Note: recursion with probability

Problem 6

In convex quadrilateral $KLMN$, side $\overline{MN}$ is perpendicular to diagonal $\overline{KM}$, side $\overline{KL}$ is perpendicular to diagonal $\overline{LN}$, $MN = 65$, and $KL = 28$. The line through $L$ perpendicular to side $\overline{KN}$ intersects diagonal $\overline{KM}$ at $O$ with $KO = 8$. Find $MO$.

Problem 14

Find the least odd prime factor of $2019^8 + 1$.

Note: Use FLT

Problem 8

Find the number of sets $\{a,b,c\}$ of three distinct positive integers with the property that the product of $a,b,$ and $c$ is equal to the product of $11,21,31,41,51,$ and $61$.

Problem 10

Triangle $ABC$ is inscribed in circle $\omega$. Points $P$ and $Q$ are on side $\overline{AB}$ with $AP<AQ$. Rays $CP$ and $CQ$ meet $\omega$ again at $S$ and $T$ (other than $C$), respectively. If $AP=4,PQ=3,QB=6,BT=5,$ and $AS=7$, then $ST=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 6

In $\triangle ABC$ let $I$ be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect $\overline{AB}$ at $L$. The line through $C$ and $L$ intersects the circumscribed circle of $\triangle ABC$ at the two points $C$ and $D$. If $LI=2$ and $LD=3$, then $IC= \frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Note: angle chase, then angle bisectors.

Problem 7

For integers $a$ and $b$ consider the complex number\[\frac{\sqrt{ab+2016}}{ab+100}-\left(\frac{\sqrt{|a+b|}}{ab+100}\right)i.\]Find the number of ordered pairs of integers $(a,b)$ such that this complex number is a real number.

Note: $ab \neq -100$ and beware of absolute value sign

Problem 9

Triangle $ABC$ has $AB=40,AC=31,$ and $\sin{A}=\frac{1}{5}$. This triangle is inscribed in rectangle $AQRS$ with $B$ on $\overline{QR}$ and $C$ on $\overline{RS}$. Find the maximum possible area of $AQRS$.

Use: [asy]  size(400); import olympiad; import geometry;  pair A = (0, 20) ,B=(30,10) ,C=(15,0), Q=(30,20) ,R=(30,0), S=(0,0);  draw(A--B--C--cycle); draw(A--Q); draw(Q--R); draw(R--S); draw(S--A);  label("$A$", A, W);  label("$B$", B, E); label("$C$", C, N); label("$Q$", Q, E); label("$R$", R, E); label("$S$", S, W);  label("$w$", (-1,10)); label("$l$", (15,21)); label("$y$", (7.5,-1)); label("$x$", (31,15)); label("$31$",(7.5,10), E); label("$40$",(15,15), N);  markangle(Label("$\alpha$", Relative(0.5)), n=1, C, A, B); markangle(Label("$\beta$", Relative(0.5)), n=1, B, A, Q); markangle(Label("$\gamma$", Relative(0.5)), n=1, S, A, C);     [/asy]

Problem 12

Find the least positive integer $m$ such that $m^2 - m + 11$ is a product of at least four not necessarily distinct primes.

Note: $m$ should be multiple of $11$.