Difference between revisions of "2024 IMO Problems/Problem 1"

 
Line 1: Line 1:
Find all real numbers <math>\alpha</math> such that for any positive integer <math>n</math> the integer
+
Determine all real numbers <math>\alpha</math> such that, for every positive integer <math>n</math>, the integer
  
 
<cmath>\lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \dots +\lfloor n\alpha \rfloor</cmath>
 
<cmath>\lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \dots +\lfloor n\alpha \rfloor</cmath>
  
is divisible by <math>n</math>.
+
is a multiple of <math>n</math>. (Note that <math>\lfloor z \rfloor</math> denotes the greatest integer less than or equal to <math>z</math>. For example, <math>\lfloor -\pi \rfloor = -4</math> and <math>\lfloor 2 \rfloor = \lfloor 2.9 \rfloor = 2</math>.)

Latest revision as of 11:40, 16 July 2024

Determine all real numbers $\alpha$ such that, for every positive integer $n$, the integer

\[\lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \dots +\lfloor n\alpha \rfloor\]

is a multiple of $n$. (Note that $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$. For example, $\lfloor -\pi \rfloor = -4$ and $\lfloor 2 \rfloor = \lfloor 2.9 \rfloor = 2$.)