2023 RMO

Revision as of 09:01, 2 November 2024 by Caladrius (talk | contribs) (Problem 4)

Problem 1

Let $\mathbb{N}$ be the set of all positive integers and $S = {(a,b,c,d)  \in  \mathbb{N}^{4} : a^{2} + b^{2} + c^{2} = d^{2}}$. Find the largest positive integer $m$ such that $m$ divides $abcd$ for all $(a,b,c,d)  \in S$.

Problem 2

Let $\omega$ be a semicircle with $AB$ as the bounding diameter and let $CD$ be a variable chord of the semicircle of constant length such that $C,D$ lie in the interior of the arc $AB$. Let $E$ be a point on the diameter $AB$ such that $CE$ and $DE$ are equally inclined to the line $AB$. Prove that

(a) the measure of $\angle CED$ is a constant;

(b) the circumcircle of triangle $CED$ passes through a fixed point.

Problem 3

Problem 4

Problem 5

Problem 6

Consider a set of $16$ points arranged in a $4\times4$ square grid formation. Prove that if any $7$ of these points are coloured blue, then there exists an isosceles right-angled triangle whose vertices are all blue.