2024 AMC 12A Problems/Problem 20

Revision as of 17:45, 8 November 2024 by Technodoggo (talk | contribs) (Created page with "Points <math>P</math> and <math>Q</math> are chosen uniformly and independently at random on sides <math>\overline {AB}</math> and <math>\overline{AC},</math> respectively, of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Points $P$ and $Q$ are chosen uniformly and independently at random on sides $\overline {AB}$ and $\overline{AC},$ respectively, of equilateral triangle $\triangle ABC.$ Which of the following intervals contains the probability that the area of $\triangle APQ$ is less than half the area of $\triangle ABC?$

$\textbf{(A) } \left[\frac 38, \frac 12\right] \qquad \textbf{(B) } \left(\frac 12, \frac 23\right] \qquad \textbf{(C) } \left(\frac 23, \frac 34\right] \qquad \textbf{(D) } \left(\frac 34, \frac 78\right] \qquad \textbf{(E) } \left(\frac 78, 1\right]$

Solution 1

Let $\overline{AP}=x$ and $\overline{AQ}=y$. Applying the sine formula for a triangle's area, we see that $[\Delta APQ]=\dfrac12\cdot x\cdot y\sin(\angle PAQ)=\dfrac{xy}2\sin(60^\circ)=\dfrac{\sqrt3}4xy$. Without loss of generality, we let $AB=BC=CA=1$, and thus the area of $\Delta ABC$ is $\dfrac{\sqrt3}4$; we therefore require $\dfrac{\sqrt3}4xy\le\dfrac{\sqrt3}8\implies xy\le\dfrac12$ for $0\le x,y\le1$. A quick rough sketch of $y=\dfrac1{2x}$ on the square given by $x,y\in[0,1]$ reveals that the curve intersects the boundaries at $(0.5,1)$ and $(1,0.5)$, and it is actually quite (very) obvious that the area bounded by the inequality $xy\le0.5$ and the aforementioned unit square is more than $\dfrac34$ but less than $\dfrac78$ (cf. the diagram below). Thus, our answer is $\boxed{\textbf{(D) }\left(\dfrac34,\dfrac78\right]}$.

[asy] /*Asymptote visual by Technodoggo, 7 November 2024*/ unitsize(8cm);  draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); label("$0$",(-0.05,-0.05)); label("$1$",(1,-0.05),S); label("$1$",(-0.05,1),W); draw((-0.05,0)--(1,0)--(1,-0.05)); draw((0,-0.05)--(0,1)--(-0.05,1));  real f(real x) {return 1/(2*x);}  path c = graph(f, 0.5,1)--(1,0)--(0,0)--(0,1)--cycle;  filldraw(c,blue+white);  draw((0.5,1)--(0.5,0.5)--(1,0.5),white+dashed+1.1); draw((0.5,1)--(1,0.5),red+dashed+1.1); [/asy]

~Technodoggo