Difference between revisions of "1999 IMO Problems/Problem 6"

(Solution)
(Solution)
Line 11: Line 11:
 
Substituting <math>x = y = 0 </math>, we get:
 
Substituting <math>x = y = 0 </math>, we get:
  
<cmath>f(-c) = f(c) + c - 1.    ... (1) </cmath>
+
<cmath>f(-c) = f(c) + c - 1. \hspace{1cm}   ... (1) </cmath>
 
Now if c = 0, then:
 
Now if c = 0, then:
  
Line 22: Line 22:
 
<cmath>c = f(x) + x^{2} + f(x) - 1 </cmath>.
 
<cmath>c = f(x) + x^{2} + f(x) - 1 </cmath>.
  
Solving for f(x), we get <math>f(x) = \frac{c + 1}{2} - \frac{x^{2}}{2}.   ... (2) </math><math>
+
Solving for f(x), we get <math>f(x) = \frac{c + 1}{2} - \frac{x^{2}}{2}. \hspace{1cm}  ... (2) </math><math>
  
 
This means </math>f(x) = f(-x) <math> because </math>x^{2} = (-x)^{2} <math>.
 
This means </math>f(x) = f(-x) <math> because </math>x^{2} = (-x)^{2} <math>.
  
Specifically, </math>f(c) = f(-c).     ... (3) <math></math>
+
Specifically, </math>f(c) = f(-c). \hspace{1cm}    ... (3) <math></math>
  
 
Using equations <math>(1) </math> and <math>(3) </math>, we get:
 
Using equations <math>(1) </math> and <math>(3) </math>, we get:

Revision as of 07:48, 24 June 2024

Problem

Determine all functions $f:\Bbb{R}\to \Bbb{R}$ such that

\[f(x-f(y))=f(f(y))+xf(y)+f(x)-1\]

for all real numbers $x,y$.

Solution

Let $f(0) = c$. Substituting $x = y = 0$, we get:

\[f(-c) = f(c) + c - 1. \hspace{1cm}    ... (1)\] Now if c = 0, then:

\[f(0) = f(0) - 1\] which is not possible.

$\implies c \neq 0$.

Now substituting $x = f(y)$, we get

\[c = f(x) + x^{2} + f(x) - 1\].

Solving for f(x), we get $f(x) = \frac{c + 1}{2} - \frac{x^{2}}{2}. \hspace{1cm}  ... (2)$$This means$f(x) = f(-x) $because$x^{2} = (-x)^{2} $.

Specifically,$ (Error compiling LaTeX. Unknown error_msg)f(c) = f(-c). \hspace{1cm} ... (3) $$ (Error compiling LaTeX. Unknown error_msg)

Using equations $(1)$ and $(3)$, we get:

\[f(c) = f(c) + c - 1\]

which gives

\[c = 1\].

So, using this in equation $(2)$, we get

$$ (Error compiling LaTeX. Unknown error_msg)\boxed{f(x) = 1 - \frac{x^{2}}{2}} $ as the only solution to this functional equation.

See Also

1999 IMO (Problems) • Resources
Preceded by
Problem 5
1 2 3 4 5 6 Followed by
Last Question
All IMO Problems and Solutions