Difference between revisions of "2019 AMC 10A Problems/Problem 11"

Line 1: Line 1:
 
How many positive integer divisors of <math>201^9</math> are perfect squares or perfect cubes (or both)?
 
How many positive integer divisors of <math>201^9</math> are perfect squares or perfect cubes (or both)?
  
<math>\{\textbf{(A) }32}</math> <math>\{\textbf{(B) }36}</math> <math>\{\textbf{(C) }37}</math> <math>\{\textbf{(D) }39}</math> <math>\{\textbf{(E) }41}</math>
+
<math>{\textbf{(A) }32} \qquad {\textbf{(B) }36} \qquad {\textbf{(C) }37} \qquad {\textbf{(D) }39} \qquad {\textbf{(E) }41}</math>

Revision as of 15:34, 9 February 2019

How many positive integer divisors of $201^9$ are perfect squares or perfect cubes (or both)?

${\textbf{(A) }32} \qquad {\textbf{(B) }36} \qquad {\textbf{(C) }37} \qquad {\textbf{(D) }39} \qquad {\textbf{(E) }41}$