Difference between revisions of "2019 AMC 12B Problems/Problem 8"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
+ | Let <math>f(x) = x^{2}(1-x)^{2}</math>. What is the value of the sum | ||
+ | <math>f(\frac{1}{2019})-f(\frac{2}{2019})+f(\frac{3}{2019})-f(\frac{4}{2019})+\cdots </math> | ||
+ | |||
+ | <math>+ f(\frac{2017}{2019}) - f(\frac{2018}{2019})</math>? | ||
+ | |||
+ | (A) <math>0</math>, (B) <math>\frac{1}{2019^{4}}</math>, (C) <math>\frac{2018^{2}}{2019^{4}}</math>, (D) <math>\frac{2020^{2}}{2019^{4}}</math>, (E) <math>1</math>. | ||
==Solution== | ==Solution== |
Revision as of 12:33, 14 February 2019
Problem
Let . What is the value of the sum
?
(A) , (B) , (C) , (D) , (E) .
Solution
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.