Difference between revisions of "2019 AMC 12B Problems/Problem 8"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Let <math>f(x) = x^{2}(1-x)^{2}</math>. What is the value of the sum
 +
<math>f(\frac{1}{2019})-f(\frac{2}{2019})+f(\frac{3}{2019})-f(\frac{4}{2019})+\cdots </math>
 +
 +
<math>+ f(\frac{2017}{2019}) - f(\frac{2018}{2019})</math>?
 +
 +
(A) <math>0</math>, (B) <math>\frac{1}{2019^{4}}</math>, (C) <math>\frac{2018^{2}}{2019^{4}}</math>, (D) <math>\frac{2020^{2}}{2019^{4}}</math>, (E) <math>1</math>.
  
 
==Solution==
 
==Solution==

Revision as of 12:33, 14 February 2019

Problem

Let $f(x) = x^{2}(1-x)^{2}$. What is the value of the sum $f(\frac{1}{2019})-f(\frac{2}{2019})+f(\frac{3}{2019})-f(\frac{4}{2019})+\cdots$

$+ f(\frac{2017}{2019}) - f(\frac{2018}{2019})$?

(A) $0$, (B) $\frac{1}{2019^{4}}$, (C) $\frac{2018^{2}}{2019^{4}}$, (D) $\frac{2020^{2}}{2019^{4}}$, (E) $1$.

Solution

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png