Difference between revisions of "2019 AMC 12B Problems/Problem 19"
(→Problem) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | First, notice that Fiona, if she jumps over the predator on pad <math>3</math>, \textbf{must} land on pad <math>4</math>. Similarly, she must land on <math>7</math> if she makes it past <math>6</math>. Thus, we can split it into <math>3</math> smaller problems counting the probability Fiona skips <math>3</math>, Fiona skips <math>6</math> (starting at <math>4</math>) and \textit{doesn't} skip <math>10</math> (starting at <math>7</math>). Incidentally, the last one is equivalent to the first one minus <math>1</math>. | ||
+ | |||
+ | Let's call the larger jump a <math>2</math>-jump, and the smaller a <math>1</math>-jump. | ||
+ | |||
+ | For the first mini-problem, let's see our options. Fiona can either go <math>1, 1, 2</math> (probability of \frac{1}{8}), or she can go <math>2, 2</math> (probability of \frac{1}{4}). These are the only two options, so they together make the answer <math>\frac{3}{8}</math>. We now also know the answer to the last mini-problem (<math>\frac{5}{8}</math>). | ||
+ | |||
+ | For the second mini-problem, Fiona \textit{must} go <math>1, 2</math> (probability of \frac{1}{4}). Any other option results in her death to a predator. | ||
+ | |||
+ | Thus, the final answer is <math>\frac{3}{8} \cdot \frac{1}{4} \cdot \frac{5}{8} = \frac{15}{256} = \boxed{A}</math> | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2019|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2019|ab=B|num-b=18|num-a=20}} |
Revision as of 13:25, 14 February 2019
Problem
There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?
Solution
First, notice that Fiona, if she jumps over the predator on pad , \textbf{must} land on pad . Similarly, she must land on if she makes it past . Thus, we can split it into smaller problems counting the probability Fiona skips , Fiona skips (starting at ) and \textit{doesn't} skip (starting at ). Incidentally, the last one is equivalent to the first one minus .
Let's call the larger jump a -jump, and the smaller a -jump.
For the first mini-problem, let's see our options. Fiona can either go (probability of \frac{1}{8}), or she can go (probability of \frac{1}{4}). These are the only two options, so they together make the answer . We now also know the answer to the last mini-problem ().
For the second mini-problem, Fiona \textit{must} go (probability of \frac{1}{4}). Any other option results in her death to a predator.
Thus, the final answer is
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |