Difference between revisions of "2006 Romanian NMO Problems/Grade 9/Problem 2"
m |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>\displaystyle ABC</math> and <math>\displaystyle DBC</math> be isosceles triangle with the base <math>\displaystyle BC</math>. We know that <math>\displaystyle \angle ABD = \frac{\pi}{2}</math>. Let <math>\displaystyle M</math> be the midpoint of <math>\displaystyle BC</math>. The points <math>\displaystyle E,F,P</math> are chosen such that <math>\displaystyle E \in (AB)</math>, <math>\displaystyle P \in (MC)</math>, <math>\displaystyle C \in (AF)</math>, and <math>\displaystyle \angle BDE = \angle ADP = \angle CDF</math>. Prove that <math>\displaystyle P</math> is the midpoint of <math>\displaystyle EF</math> and <math>\displaystyle DP \perp EF</math>. | + | Let <math>\displaystyle ABC</math> and <math>\displaystyle DBC</math> be [[isosceles triangle]]s with the base <math>\displaystyle BC</math>. We know that <math>\displaystyle \angle ABD = \frac{\pi}{2}</math>. Let <math>\displaystyle M</math> be the [[midpoint]] of <math>\displaystyle BC</math>. The points <math>\displaystyle E,F,P</math> are chosen such that <math>\displaystyle E \in (AB)</math>, <math>\displaystyle P \in (MC)</math>, <math>\displaystyle C \in (AF)</math>, and <math>\displaystyle \angle BDE = \angle ADP = \angle CDF</math>. Prove that <math>\displaystyle P</math> is the midpoint of <math>\displaystyle EF</math> and <math>\displaystyle DP \perp EF</math>. |
==Solution== | ==Solution== | ||
+ | {{solution}} | ||
==See also== | ==See also== | ||
+ | *[[2006 Romanian NMO Problems/Grade 9/Problem 1 | Previous problem]] | ||
+ | *[[2006 Romanian NMO Problems/Grade 9/Problem 3 | Next problem]] | ||
*[[2006 Romanian NMO Problems]] | *[[2006 Romanian NMO Problems]] | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] |
Revision as of 15:01, 13 October 2006
Problem
Let and be isosceles triangles with the base . We know that . Let be the midpoint of . The points are chosen such that , , , and . Prove that is the midpoint of and .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.