Difference between revisions of "1977 AHSME Problems/Problem 25"

(Problem 25)
(Problem 25)
Line 1: Line 1:
 
== Problem 25 ==
 
== Problem 25 ==
 
Determine the largest positive integer <math>n</math> such that <math>1005!</math> is divisible by <math>10^n</math>.
 
Determine the largest positive integer <math>n</math> such that <math>1005!</math> is divisible by <math>10^n</math>.
\textbf{(A) }79\qquad
+
<math>
\textbf{(B) }80\qquad
+
\textbf{(A) }102\qquad
\textbf{(C) }81\qquad
+
\textbf{(B) }112\qquad
\textbf{(D) }82\qquad
+
\textbf{(C) }249\qquad
 +
\textbf{(D) }502\qquad
 
\\
 
\\
 +
</math>

Revision as of 18:40, 20 February 2019

Problem 25

Determine the largest positive integer $n$ such that $1005!$ is divisible by $10^n$. $\textbf{(A) }102\qquad \textbf{(B) }112\qquad \textbf{(C) }249\qquad \textbf{(D) }502\qquad \$ (Error compiling LaTeX. Unknown error_msg)