Difference between revisions of "2019 AIME I Problems"
(→Problem 9) |
(Added Problems 11-15) |
||
Line 36: | Line 36: | ||
Let <math>\tau (n)</math> denote the number of positive integer divisors of <math>n</math>. Find the sum of the six least positive integers <math>n</math> that are solutions to <math>\tau (n) + \tau (n+1) = 7</math>. | Let <math>\tau (n)</math> denote the number of positive integer divisors of <math>n</math>. Find the sum of the six least positive integers <math>n</math> that are solutions to <math>\tau (n) + \tau (n+1) = 7</math>. | ||
+ | |||
+ | ==Problem 10== | ||
+ | |||
+ | For distinct complex numbers <math>z_1,z_2,\dots,z_{673}</math>, the polynomial | ||
+ | <cmath> (x-z_1)^3(x-z_2)^3 \cdots (x-z_{673})^3 </cmath> | ||
+ | can be expressed as <math>x^{2019} + 20x^{2018} + 19x^{2017}+g(x)</math>, where <math>g(x)</math> is a polynomial with complex coefficients and with degree at most <math>2016</math>. The value of | ||
+ | <cmath> \left| \sum_{1 \le j <k \le 673} z_jz_k \right| </cmath> | ||
+ | can be expressed in the form <math>\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | |||
+ | ==Problem 11== | ||
+ | |||
+ | In <math>\triangle ABC</math>, the sides have integers lengths and <math>AB=AC</math>. Circle <math>\omega</math> has its center at the incenter of <math>\triangle ABC</math>. An [i]excircle[/i] of <math>\triangle ABC</math> is a circle in the exterior of <math>\triangle ABC</math> that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to <math>\overline{BC}</math> is internally tangent to <math>\omega</math>, and the other two excircles are both externally tangent to <math>\omega</math>. Find the minimum possible value of the perimeter of <math>\triangle ABC</math>. | ||
+ | |||
+ | ==Problem 12== | ||
+ | |||
+ | Given <math>f(z) = z^2-19z</math>, there are complex numbers <math>z</math> with the property that <math>z</math>, <math>f(z)</math>, and <math>f(f(z))</math> are the vertices of a right triangle in the complex plane with a right angle at <math>f(z)</math>. There are positive integers <math>m</math> and <math>n</math> such that one such value of <math>z</math> is <math>m+\sqrt{n}+11i</math>. Find <math>m+n</math>. | ||
+ | |||
+ | ==Problem 13== | ||
+ | |||
+ | Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
+ | |||
+ | ==Problem 14== | ||
+ | |||
+ | Find the least odd prime factor of <math>2019^8 + 1</math>. | ||
+ | |||
+ | ==Problem 15== | ||
+ | |||
+ | Let <math>\overline{AB}</math> be a chord of a circle <math>\omega</math>, and let <math>P</math> be a point on the chord <math>\overline{AB}</math>. Circle <math>\omega_1</math> passes through <math>A</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circle <math>\omega_2</math> passes through <math>B</math> and <math>P</math> and is internally tangent to <math>\omega</math>. Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>P</math> and <math>Q</math>. Line <math>PQ</math> intersects <math>\omega</math> at <math>X</math> and <math>Y</math>. Assume that <math>AP=5</math>, <math>PB=3</math>, <math>XY=11</math>, and <math>PQ^2 = \tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
Revision as of 19:23, 14 March 2019
Contents
[hide]Problem 1
Consider the integer Find the sum of the digits of .
Problem 2
Jenn randomly chooses a number from . Bela then randomly chooses a number from distinct from . The value of is at least with a probability that can be expressed in the form where and are relatively prime positive integers. Find .
Problem 3
In , , , and . Points and lie on , points and lie on , and points and lie on , with . Find the area of hexagon .
Problem 4
A soccer team has 22 available players. A fixed set of 11 players starts the game, while the other 11 are available as substitutes. During the game, the coach may make as many as 3 substitutions, where any one of the 11 players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when is divided by 1000.
Problem 5
A moving particle starts at the point and moves until it hits one of the coordinate axes for the first time. When the particle is at the point , it moves at random to one of the points , , or , each with probability , independently of its previous moves. The probability that it will hit the coordinate axes at is , where and are positive integers. Find .
Problem 6
In convex quadrilateral side is perpendicular to diagonal , side is perpendicular to diagonal , , and . The line through perpendicular to side intersects diagonal at with . Find .
Problem 7
There are positive integers and that satisfy the system of equations Let be the number of (not necessarily distinct) prime factors in the prime factorization of , and let be the number of (not necessarily distinct) prime factors in the prime factorization of . Find .
Problem 8
Let be a real number such that . Then where and are relatively prime positive integers. Find .
Problem 9
Let denote the number of positive integer divisors of . Find the sum of the six least positive integers that are solutions to .
Problem 10
For distinct complex numbers , the polynomial can be expressed as , where is a polynomial with complex coefficients and with degree at most . The value of can be expressed in the form , where and are relatively prime positive integers. Find .
Problem 11
In , the sides have integers lengths and . Circle has its center at the incenter of . An [i]excircle[/i] of is a circle in the exterior of that is tangent to one side of the triangle and tangent to the extensions of the other two sides. Suppose that the excircle tangent to is internally tangent to , and the other two excircles are both externally tangent to . Find the minimum possible value of the perimeter of .
Problem 12
Given , there are complex numbers with the property that , , and are the vertices of a right triangle in the complex plane with a right angle at . There are positive integers and such that one such value of is . Find .
Problem 13
Triangle has side lengths , , and . Points and are on ray with . The point is a point of intersection of the circumcircles of and satisfying and . Then can be expressed as , where , , , and are positive integers such that and are relatively prime, and is not divisible by the square of any prime. Find .
Problem 14
Find the least odd prime factor of .
Problem 15
Let be a chord of a circle , and let be a point on the chord . Circle passes through and and is internally tangent to . Circle passes through and and is internally tangent to . Circles and intersect at points and . Line intersects at and . Assume that , , , and , where and are relatively prime positive integers. Find .