Difference between revisions of "A choose b"
Line 32: | Line 32: | ||
Here is the proof: | Here is the proof: | ||
− | |||
− | |||
<cmath>\begin{eqnarray*}\binom{n-1}{k-1}+\binom{n-1}{k}&=&\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!}\\ | <cmath>\begin{eqnarray*}\binom{n-1}{k-1}+\binom{n-1}{k}&=&\frac{(n-1)!}{(k-1)!(n-k)!}+\frac{(n-1)!}{k!(n-k-1)!}\\ |
Revision as of 19:45, 15 June 2019
Here is the formula for a choose b: . This is assuming that of course .
Why is it important?
a choose b counts the number of ways you can pick b things from a set of a things. For example . More at https://artofproblemsolving.com/videos/counting/chapter4/64.
a choose 2
Here is a list of n choose 2's
These are triangle numbers! My proof uses induction (assuming something is true unless proofed true or not true). Then Simplify:
More Simplify:
So now we have proved it. If you don't get what I did on the second step go to Proof Without Words on this wiki.
Pascal's Identity
Pascal's Identity states that
Here is the proof: