Difference between revisions of "Mock AIME 2 Pre 2005 Problems/Problem 2"
(Created page with "== Problem == <math>x</math> is a real number with the property that <math>x+\tfrac1x = 3</math>. Let <math>S_m = x^m + \tfrac{1}{x^m}</math>. Determine the value of <math>S_7...") |
(→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
We can calculate <cmath>x^2 + \dfrac{1}{x^2} = \left(x + \dfrac{1}{x}\right)^2 - 2 = 3^2 -2 = 7.</cmath> Similarly, <cmath>x^3 + \dfrac{1}{x^3} = \left(x + \dfrac{1}{x}\right) \left(x^2 + \dfrac{1}{x^2}\right) - \left(x + \dfrac{1}{x}\right) = 3 \cdot 7 - 3 = 18</cmath> and <cmath>x^4 + \dfrac{1}{x^4} = \left(x^2 + \dfrac{1}{x^2}\right)^2 - 2 = 7^2 - 2 = 47.</cmath> Finally, <cmath>x^7 + \dfrac{1}{x^7} = \left(x^3 + \dfrac{1}{x^3}\right) \left(x^4 + \dfrac{1}{x^4}\right) - \left(x + \dfrac{1}{x}\right) = 18 \cdot 47 - 3 = \boxed{843}.</cmath> | We can calculate <cmath>x^2 + \dfrac{1}{x^2} = \left(x + \dfrac{1}{x}\right)^2 - 2 = 3^2 -2 = 7.</cmath> Similarly, <cmath>x^3 + \dfrac{1}{x^3} = \left(x + \dfrac{1}{x}\right) \left(x^2 + \dfrac{1}{x^2}\right) - \left(x + \dfrac{1}{x}\right) = 3 \cdot 7 - 3 = 18</cmath> and <cmath>x^4 + \dfrac{1}{x^4} = \left(x^2 + \dfrac{1}{x^2}\right)^2 - 2 = 7^2 - 2 = 47.</cmath> Finally, <cmath>x^7 + \dfrac{1}{x^7} = \left(x^3 + \dfrac{1}{x^3}\right) \left(x^4 + \dfrac{1}{x^4}\right) - \left(x + \dfrac{1}{x}\right) = 18 \cdot 47 - 3 = \boxed{843}.</cmath> | ||
+ | |||
+ | -MP8148 | ||
== See also == | == See also == |