Difference between revisions of "Arithmetico-geometric series"
(→Infinite Sum) |
|||
Line 21: | Line 21: | ||
== Infinite Sum == | == Infinite Sum == | ||
− | The sum of an infinite arithmetico-geometric sequence is <math>\frac{dg_2}{(1-r)^2}+\frac{x_1}{1-r}</math>, where <math>d</math> is the common difference of <math>a_n</math> and <math>r</math> is the common difference of <math>g_n</math> (|r|<1). Or, <math>\frac{drS_g+x_1}{1-r}</math>, where <math>S_g</math> is the infinite sum of the <math>g_n</math>. | + | The sum of an infinite arithmetico-geometric sequence is <math>\frac{dg_2}{(1-r)^2}+\frac{x_1}{1-r}</math>, where <math>d</math> is the common difference of <math>a_n</math> and <math>r</math> is the common difference of <math>g_n</math> (<math>|r|<1</math>). Or, <math>\frac{drS_g+x_1}{1-r}</math>, where <math>S_g</math> is the infinite sum of the <math>g_n</math>. |
<math>S=a_1g_1+(a_1+d)(g_1r)+(a_1+2d)(g_1r^2)+\ldots</math> | <math>S=a_1g_1+(a_1+d)(g_1r)+(a_1+2d)(g_1r^2)+\ldots</math> |
Revision as of 22:37, 4 November 2006
An arithmetico-geometric series is the sum of consecutive terms in an arithmetico-geometric sequence defined as: , where and are the th terms of arithmetic and geometric sequences, respectively.
Finite Sum
The sum of the first n terms of an arithmetico-geometric sequence is , where is the common difference of and is the common ratio of . Or, , where is the sum of the first terms of .
Proof:
Let represent the sum of the first n terms.
Infinite Sum
The sum of an infinite arithmetico-geometric sequence is , where is the common difference of and is the common difference of (). Or, , where is the infinite sum of the .