Difference between revisions of "2019 Mock AMC 10B Problems/Problem 19"
Line 8: | Line 8: | ||
<math>3^{2016} - 1 = (3^{1008} - 1)(3^{1008} + 1) = (3^{504} - 1)(3^{504} + 1)(3^{1008} + 1) = (3^{252} - 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)</math> | <math>3^{2016} - 1 = (3^{1008} - 1)(3^{1008} + 1) = (3^{504} - 1)(3^{504} + 1)(3^{1008} + 1) = (3^{252} - 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)</math> | ||
− | <math>= (3^{126} - 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1) = (3^{63} - 1)(3^{63} + 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)</math>. By simple mod checking, we find that <math>3^{1008} + 1 \equiv 3^{504} + 1 \equiv 3^{252} + 1 \equiv 3^{126} + 1 \equiv 3^{63} - 1 \equiv 2</math> <math>\text{mod}</math> <math>4</math>, and <math>3^{63} + 1 \equiv 4</math> <math>\text{mod}</math> <math>8</math>. Therefore, the smallest powers of <math>2</math> that divide each of these numbers are <math>2, 2, 2, 2, 2</math>, and <math>4</math>, respectively. The smallest power of <math>2</math> that divides <math>3^{2016} - 1</math> is thus <math>2^5 \cdot 4 = \boxed{\text{(E)} 256}</math>. | + | <math>= (3^{126} - 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1) = (3^{63} - 1)(3^{63} + 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)</math>. |
+ | |||
+ | By simple mod checking, we find that | ||
+ | |||
+ | <math>3^{1008} + 1 \equiv 3^{504} + 1 \equiv 3^{252} + 1 \equiv 3^{126} + 1 \equiv 3^{63} - 1 \equiv 2</math> <math>\text{mod}</math> <math>4</math>, and <math>3^{63} + 1 \equiv 4</math> <math>\text{mod}</math> <math>8</math>. | ||
+ | |||
+ | Therefore, the smallest powers of <math>2</math> that divide each of these numbers are <math>2, 2, 2, 2, 2</math>, and <math>4</math>, respectively. The smallest power of <math>2</math> that divides <math>3^{2016} - 1</math> is thus <math>2^5 \cdot 4 = \boxed{\text{(E)} 256}</math>. |
Revision as of 20:50, 2 November 2019
Problem
What is the largest power of that divides ?
Solution
.
By simple mod checking, we find that
, and .
Therefore, the smallest powers of that divide each of these numbers are , and , respectively. The smallest power of that divides is thus .